
Analytic Displacement Mapping using Hardware Tessellation
Matthias Nießner
University of Erlangen-Nuremberg
and
Charles Loop
Microsoft Research

Displacement mapping is ideal for modern GPUs since it enables high-
frequency geometric surface detail on models with low memory I/O. How-
ever, problems such as texture seams, normal re-computation, and under-
sampling artifacts have limited its adoption. We provide a comprehensive
solution to these problems by introducing a smooth analytic displacement
function. Coefficients are stored in a GPU-friendly tile based texture format,
and a multi-resolution mip hierarchy of this function is formed. We propose
a novel level-of-detail scheme by computing per vertex adaptive tessellation
factors and select the appropriate pre-filtered mip levels of the displace-
ment function. Our method obviates the need for a pre-computed normal
map since normals are directly derived from the displacements. Thus, we
are able to perform authoring and rendering simultaneously without typical
displacement map extraction from a dense triangle mesh. This not only is
more flexible than the traditional combination of discrete displacements and
normal maps, but also provides faster runtime due to reduced memory I/O.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Pic-
ture/Image Generation—Display Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface, solid, and
object representations

General Terms: Subdivision Surfaces, GPU

Additional Key Words and Phrases: Catmull-Clark subdivision surfaces,
displacement mapping, hardware tessellation

ACM Reference Format:
Pamplona, V. F., Oliveira, M. M., and Baranoski, G. V. G. 2009. Photore-
alistic models for pupil light reflex and iridal pattern deformation. ACM
Trans. Graph. 28, 4, Article 106 (August 2009), 11 pages.
DOI = 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

Manuel M. Oliveira acknowledges a CNPq-Brazil fellowship
(305613/2007-3). Gladimir V. G. Baranoski acknowledges a NSERC-
Canada grant (238337). Microsoft Brazil provided additional support.
Authors’ addresses: land and/or email addresses.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 0730-0301/2009/13-ART106 $10.00

DOI 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

1. INTRODUCTION

Displacement mapping has been used as a means of efficiently rep-
resenting and animating 3D objects with high frequency surface
detail. Where texture mapping assigns color to surface points at
u, v parameter values, displacement mapping assigns vector off-
sets. The advantages of this approach are two-fold. First, only the
vertices of a coarse (low frequency) base mesh need to be updated
each frame to animate the model. Second, since the only connec-
tivity data needed is for the coarse base mesh, significantly less
space is needed to store the equivalent highly detailed mesh. Fur-
ther space reductions are realized by storing scalar, rather than vec-
tor offsets. The displacement is then achieved by offsetting a base
surface point in its normal direction according to the value stored
in a scalar displacement map. While not as flexible from a mod-
eling standpoint as vector displacement mapping, scalar displace-
ment mapping significantly reduces data throughput in the graphics
pipeline, as well as the overall storage space and transmission re-
quirements for digital models.

Recently introduced hardware tessellation is ideally suited to
displacement mapping. Higher order parametric patches provide a
base surface that is evaluated on-chip to form a dense triangle mesh
and immediately rasterized with low memory I/O. Displacing tri-
angle vertices in their normal direction according to a value stored
in texture memory has very little performance impact. However,
while conceptually simple and highly efficient, hardware displace-
ment mapping has not been widely adopted in real-time applica-
tions due to several subtle artifacts. We address these artifacts in
this paper.

1.1 Displacement Mapping Artifacts

Meshes are typically endowed with a parameterization in the form
of a 2D texture atlas. Conceptually, a few seams are introduced on
edges to unfold the surface into the plane, creating a mapping (an
atlas) from the plane to the surface. Points on seams map to more
than one point in texture space resulting in inconsistent values; bi-
linear texture filtering exacerbates this problem. For displacement
mapping, this can lead to unacceptable cracks in a rendered surface.

The normal of the base surface serves as the direction of dis-
placement. However, this base surface normal is, in general, not
the normal of the resulting displaced surface; complicating accu-
rate shading. To overcome this problem, normal mapping has been
used to assign more plausible surface normals over displaced ver-
tices to reduce shading artifacts. To allow the base surface to be
deformed, tangent space normal mapping is used, where the xyz
coordinates of the normal relative to a tangent frame are stored.
The computation of tangent frames is costly and technically chal-
lenging since these must be globally consistent across mesh edges.
While the resulting shading is often plausible, the deformed normal
field does not correspond to the displaced surface; hence it is not
accurate. Furthermore, re-computation of normal maps on-the-fly

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

2 • Nießner and Loop

Fig. 1. The Dragon Head (2706 patches; 1.7 ms and 1.2 ms) and Monster Frog (1292 patches; 1.3 ms and 0.85 ms) model rendered w/ and w/o our
displacement method. We displace vertices according to an analytic displacement function on top of a Catmull-Clark base surface using hardware tessellation
with dynamically computed tess factors. Since normals are computed based solely on the displacement function, no normal map is required. This allows
modifying displacements at runtime and increases performance due to a reduced memory I/O. The models are courtesy of the Blender Foundation and Bay
Raitt, respectively.

is necessary at displacement authoring time to give instant feed-
back. Finally, normal map textures add significantly to the storage
and data throughput costs of models.

Hardware tessellation is based on the idea of dynamic re-
tessellation of patches. That is, the underlying sampling pattern of
patch vertices should be updated every frame to keep the result-
ing triangle sizes just right; not too small or rasterization becomes
inefficient, and not too big so that faceting and interpolation arti-
facts are kept to a minimum. However, changing this sampling pat-
tern creates swimming artifacts in the displaced surface; the surface
appears to fluctuate wildly as the sampling pattern changes. This
artifact is caused by under-sampling the displacement map.

1.2 Solutions and Contributions

We propose solutions, in the context of displaced Catmull-Clark
subdivision surfaces, to all of the artifacts just mentioned. Follow-
ing Lee et al. [2000], we write the displaced surface as

f(u, v) = s(u, v) +Ns(u, v)D(u, v), (1)

where s(u, v) is a base Catmull-Clark limit surface defined by
a coarse base mesh, Ns(u, v) is its corresponding normal field,
and D(u, v) is a scalar valued displacement function. We chose
Catmull-Clark since it is an industry standard, but our ideas could
be extended to Loop subdivision as well; the important property we
leverage is that the base surface is everywhere C2, except at a lim-
ited number of extraordinary vertices where it is still C1. Requir-
ing the base surface s(u, v) to be C2 ensures that its normal field
Ns(u, v) will be C1. Furthermore, by constructing the displace-
ment function D(u, v) to be C1 with vanishing first derivatives at
extraordinary vertices, we can guarantee that the displaced surface
f(u, v) will be C1 smooth everywhere.

Our displacement function D(u, v) is a scalar valued biquadratic
B-spline surface with a Doo-Sabin subdivision surface structure.
Therefore, the discrete values found in our displacement maps
are the coefficients of this surface. Our motivation in making this
choice was to minimize the cost of (per-pixel) evaluation while also
providing a C1 smooth displacement function; biquadratic splines
are optimal for this.

In order to deal with the problem of texture seam misalignment,
we devise a tile based texture format, similar to Ptex [Burley and
Lacewell 2008], that corresponds to the quad faces of the base
mesh (possibly after one level of local subdivision). Unlike Ptex,
our format is specifically designed for the GPU, and we eliminate

the neighbor face pointers that hampers its data parallel implemen-
tation. We also deal gracefully with non-uniform tile sizes so that
surface detail is appropriately distributed over a surface. This in-
cludes down-sampled displacements (i.e., mip levels) while pro-
viding matching displacements at tile boundaries.

Since the position and derivatives of the displaced surface
f(u, v) can be evaluated analytically, no normal maps are required.
Furthermore, we demonstrate an evaluation procedure where the
low frequency base surface s(u, v) is evaluated at triangle vertices
in the domain shader, and the derivatives of the high frequency dis-
placement function D(u, v) are evaluated in the pixel shader; re-
sulting in highly accurate surface shading, even during animation.
Our scheme also supports dynamic displacement mapping; where
the displacement function can change at runtime.

Finally, we provide a novel and efficient level-of-detail scheme
based on a multi-resolution analysis of the displacement function
D(u, v). This includes computing the tessellation density on-the-
fly and selecting the appropriate mip level of the displacements.
This allows us to avoid the under-sampling problems that cause the
swimming artifacts typically encountered when varying hardware
tessellation factors. Furthermore, we are able to eliminate popping
artifacts by employing fractional tessellation factors and filtering
between corresponding mip levels.

2. PREVIOUS WORK

Texturing: Parameterizing polygon meshes is a well-known issue
in computer graphics. Texture atlases are widely used; however,
providing consistent values across chart boundaries is challenging
([Sander et al. 2003], [González and Patow 2009]). The resulting
minor color errors are often tolerable in the context of texture map-
ping; the resulting cracks in the context of displacement mapping
are not. Purnomo et al. [2004] address these color errors by finding
quadrilateral regions that are aligned in texture space. They com-
pute boundary overlap to obtain seamless texturing, and they pro-
pose several strategies to access texture entries. Our approach is
similar, but an important difference is where a power-of-two size
constraint for tile edges is enforced. Ours is on the interior of tiles
(excluding overlap); theirs is on the entire tile (including overlap).
While their design choice enables perfect packing (i.e., no wasted
space), ours allows for ideal mip pyramids; at a cost of some unused
texture space.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

Analytic Displacement Mapping using Hardware Tessellation • 3

Ray et al. [2010] introduce Invisible Seams, a method for provid-
ing consistent texture accesses and mip mapping using a traditional
texture atlas approach. Therefore, they use a set of contraints that
are applied after texture atlas updates in order to keep texture data
consistent. In contrast to their approach we avoid the use of a global
parameterization (u, v atlas) and do not require explicit texture co-
ordinates. Instead, we propose a tile based approach that uses (vir-
tual) implicit texture coordinates that align with the parameteriza-
tion that comes from the underlying Catmull-Clark base surface.
This alignment is essential for our analytic displacement function
since it allows us to derive surface normals of the displaced geome-
try; this would not be feasible with a texture atlas based technique.

Burley and Lacewell [2008] developed Ptex, a tile based textur-
ing format, for off-line rendering, and use adjacency pointers to ac-
cess neighboring tiles. These pointers must be dereferenced when
filtering on tile boundaries. We achieve the same result by storing
overlap texels along tile boundaries that correspond to the respec-
tive texels of neighboring tiles. While Ptex does not pre-filter tile
data, we form full mip pyramids over tiles to accelerate level-of-
detail management and avoid under-sampling. Mesh colors [Yuksel
et al. 2010] is another per-face texturing method. Instead of over-
lap or adjacency pointers, Mesh colors stores data indices in tex-
ture maps; consistency is achieved by index sharing. However, this
scheme requires an extra level of indirection that reduces perfor-
mance, particularly on the GPU.

Displacement Mapping: Blinn [1978] proposed perturbing sur-
face normals using a wrinkle function. While this mimics the shad-
ing of a high resolution surface, the geometry itself remains un-
changed. This lead Cook [1984] to develop displacement mapping
in order to give objects more realistic silhouettes. The use of scalar
displacements in the context of multi-resolution modeling has been
proposed by Guskov et al. [2000]. Lee et al. [2000] use a similar
idea, but they apply displacements on top of a Loop [1987] sub-
division surface. Additionally, they obtain the displacement func-
tion and its derivatives via costly iterative subdivision; our ap-
proach involves direct evaluation. Mapping discrete displacement
values on Catmull-Clark subdivision surfaces was proposed by
Bunnell [2005]. We also use Catmull-Clark [1978] as a base sur-
face, but apply a displacement function using biquadratic B-splines
with a Doo-Sabin [1978] subdivision structure. An overview of tra-
ditional displacement mapping approaches on the GPU is given
by Szirmay-Kalos and Umenhoffer [2008]. Implementing displace-
ment mapping in the context of hardware tessellation is shown by
Tatarchuck et al. [2010]. Schäfer et al. [2012] also use the tessel-
lator to apply displacements. They assign vertex attributes (such
as displacement values) in the domain shader using a shared index
format similar to Mesh colors.

Subdivision Surfaces on the GPU: Rendering subdivision sur-
faces on the GPU has been done iteratively, by repeated mesh re-
finement to temporary buffers, and then drawing the resulting tri-
angle mesh [Bunnell 2005],[Shiue et al. 2005],[Patney et al. 2009].
While this could be combined with displacement mapping, the sig-
nificant I/O of streaming data to and from the GPU memory limits
performance. On modern GPUs hardware tessellation enables eval-
uating and rendering the surface on-chip without these costly mem-
ory transfers. Hardware tessellation requires direct surface eval-
uation rather than the iterative application of subdivision rules.
This can be realized using approximate Catmull-Clark subdivision
methods (cf. [Myles et al. 2008], [Loop et al. 2009]). These G1

approximations are not adequate for our purposes since the result-
ing displaced surface will not be analytically smooth. Exact evalua-
tion using Stam’s [1998] direct approach is possible, but slow (due
to significant code branching, eigenbasis coefficient lookup, and

floating point computation). Nießner et al. [2012] perform adaptive
subdivision around extraordinary vertices using GPGPU compute
kernels and process the resulting bicubic patches with the hard-
ware tessellator. This method is also exact and relatively fast. We
use their approach to evaluate our Catmull-Clark base surface.

3. ALGORITHM OVERVIEW

Our base surface s(u, v) is the limit surface of Catmull-Clark sub-
division defined by a two-manifold control mesh, possibly with
boundaries. While this surface is traditionally defined as the re-
sult of the repeated application of a set of subdivision rules, we
(following [Halstead et al. 1993], [Stam 1998], and [Nießner et al.
2012]) treat this surface in a parametric form. The topology, geom-
etry, and parameterization of this surface are characterized by its
defining control mesh. If the faces of the control mesh are not ex-
clusively quadrilateral, then one refinement step will ensure this. A
one-to-one correspondence between these quadrilateral faces and
unit square domains is established, giving rise to a global parame-
terization of the surface (via a face ID; u, v ∈ [1, 0]× [0, 1] triple).
This is defined by the corresponding subdivision of quadrilateral
control mesh faces and unit square domains. This process has well-
defined limits and yields a closed form (via eigenbasis functions
[Stam 1998], or bicubic subpatches [Nießner et al. 2012]). In the
interest of simplicity, we assume consistency of quad face ID and
unit square domain ID; we therefore safely exclude this book keep-
ing detail from our notation.

Fig. 2. Base surface: Catmull-Clark limit patches - patch boundaries
shown as thick lines. Displacement surface: Biquadratic Doo-Sabin B-
splines - scalar coefficients on top of base surface normal field, shown as
thin lines.

For our analytic displacement function D(u, v), we use bi-
quadratic B-splines. These patches have an arrangement that is con-
sistent with Doo-Sabin subdivision. This means that the control
mesh for our displacement coefficients is dual, with refinements,
to the control mesh of the base mesh. Note however, that D(u, v)
is scalar valued and can be thought of as a height field. In other
words, both the base surface s(u, v) and the displacement function
D(u, v) correspond to the same topological two-manifold; though
embedded in R3 and R1 respectively. Note again, that choosing bi-
quadratic B-splines closely related to Doo-Sabin subdivision gives
us a globally C1 displacement function that is less costly to com-
pute than higher order alternatives.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

4 • Nießner and Loop

Figure 2 shows a detail view of a model with base patch edges
(thick curves) and the displacement function coefficients over the
base surface (thin grid). As a practical matter, we deal with extraor-
dinary vertices by imposing a constraint that causes first derivatives
of the displacement function D(u, v) to vanish at these points. This
degeneracy means that D(u, v) is a globally C1 function that can
be evaluated over the entire manifold without special case handling,
see Section 4.2 for a detailed explanation.

For each quad face of the base surface control mesh, we de-
fine a texture tile that contains the coefficients of the displacement
function. For non-quad faces, we locally subdivide once to ob-
tain quads. To evaluate the displacement function near tile bound-
aries, we need coefficient data from adjacent tiles. Trying to ex-
plicitly access adjacent tile data on the GPU would degrade perfor-
mance since only boundary evaluations would require this, causing
a branch and breaking data parallelism. Instead, we pad our tiles
with a one texel overlap region; this ensures good data parallel per-
formance since boundary evaluations will not be a special case. We
devise a straightforward tile based texture format in Section 4 that
contains these overlaps, as well as a simple solution to tile access
issues caused by extraordinary vertices.

Treating the displaced surface in a smooth analytic form means
that it will have a well-defined, smooth normal field; this will elimi-
nate many shading artifacts. Furthermore, the separation of the dis-
placed surface into a low frequency base surface and a high fre-
quency displacement function is ideally suited to a modern graphics
pipeline implementation. We evaluated the base surface and its par-
tial derivatives at a relatively low frequency in the domain shader.
The derivatives of the displacement function are then evaluated at
a higher frequency in the pixel shader. The interpolated low fre-
quency data, combined with the evaluated high frequency data re-
sults in a highly accurate normal field, ideal for lighting calcula-
tions (see Section 5).

To deal with swimming artifacts caused by displacement under-
sampling, we form mip pyramids over texture tiles via a multi-
resolution analysis of the displacement function D(u, v). In order
to remove swimming artifacts, we employ a smooth level-of-detail
scheme that matches sampling density to the appropriate displace-
ment function mip level (see Section 6).

Figure 3 provides an overview of our rendering algorithm.

Surface Shading (Pixel Shader)

𝑁𝑓(𝑢, 𝑣) =
𝜕

𝜕𝑢
𝑓 𝑢, 𝑣 ×

𝜕

𝜕𝑣
𝑓 𝑢, 𝑣

Surface Evaluation (Domain Shader)

𝑓 𝑢, 𝑣 = 𝑠 𝑢, 𝑣 + 𝑁𝑠 𝑢, 𝑣 𝐷 𝑢, 𝑣

Level-of-Detail (Hull Shader)

Tess Factor Estimation Detail Selection

Fig. 3. Algorithm overview.

4. TILE BASED TEXTURE FORMAT

We store our biquadratic displacement function coefficient data in
an axis-aligned tile based texture format. This avoids seam mis-
alignment problems that plague classic u, v atlas parameterization
texture methods. Our format can be seen as a GPU version of
Ptex [Burley and Lacewell 2008], however, we do not rely on ad-
jacent tile pointers since these are impractical on the GPU. Instead,
we store a one texel overlap per tile to enable filtering while match-
ing displacements at tile boundaries. Two of these tiles are shown
in Figure 4. Overlap computation, particularly at extraordinary ver-
tices, is described in Section 4.2. Each tile corresponds to a quad
face of the Catmull-Clark control mesh. We require tile edges to be
a power-of-two plus overlap in size; that is for a tileSize = 2k (for
integer k ≥ 1) , tile edge lengths are of the form tileSize+2. How-
ever, adjacent tiles do not need to be the same size. We currently
only support square tiles; but rectangular tiles could be supported
at a cost of a few additional storage bits per tile.

4.1 Displacement Data Generation

The base surface and displacement function needed by our algo-
rithm could be generated by a conversion process from a scanned
dense triangle mesh, or directly authored using a sculpting tool. Our
work is agnostic to this choice, but we discuss the tradeoffs here for
the sake of completeness.

Lee et al. [2000] assume that a high resolution triangle mesh is
given, and then simplified to obtain a coarse (Loop subdivision)
base mesh. The displacement data are then found by extraction us-
ing ray casting. Rays are fired for each tile entry from the base mesh
in the normal direction and intersected with the (high-resolution)
source mesh. Unfortunately, extraction using ray casting has prob-
lems. In particular, rays can miss the source surface, and typically
requires manual adjustments. These geometry processing issues re-
main as open research problems that we do not address in this pa-
per. However, assuming clean displaced sample data at all tile lo-
cations, we are able to convert surfaces with traditional displace-
ments into our tile based format. Therefore, we resample the dis-
placement map and solve for the biquadratic B-spline coefficients
to interpolate the displacement data. We have performed this con-
version process to generate the displacement data for the sample
models Dragon Head and Monster Frog (see Figure 1).

An alternative approach is to integrate scalar displacement mod-
eling into the authoring tool. This implies that sculpting data are
restricted to translations along normals of the base surface. Artists
can then directly create the displaced surface exactly as it will ap-
pear in the final application. The tile based data format we pro-
vide in this paper allows a user to directly paint on the surface
and modify displacements in place. While we apply edits on the
CPU, we only update modified tiles in GPU memory in order to
keep CPU-to-GPU memory transfer small. Modeling is analogous
to multi-resolution editing as used by typical sculpting tools such
as MudBox or ZBrush.

We do not claim that the work-flow shown in our authoring tool
is necessarily original (details of how professional authoring tools
work are proprietary). We do claim however, that by using the tech-
niques described in this paper, the delay and limitations imposed
by the intermediate step of dense triangle mesh creation can be
avoided. Far less GPU memory is needed, and the model is readily
animated without any internal conversions. Furthermore, the ana-
lytic nature of our method provides for correct shading at all scales.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

Analytic Displacement Mapping using Hardware Tessellation • 5

…

Fig. 4. Snippet of our texture format used for displacement values (8 × 8

per tile; blue) showing two tiles (bordered green) including overlap (red)
and mip levels.

4.2 Overlap at Extraordinary Vertices

Near extraordinary vertices, where more (or less) than four tiles
meet, we need a way to efficiently evaluate our displacement func-
tion. Our scalar displacement spline has a Doo-Sabin subdivision
structure; however, a direct evaluation approach based on eigen-
basis functions does not exist since the subdivision matrix for this
case is defective [Stam 1998].

Instead, we impose a constraint that will allow us to evaluate the
displacement function D(u, v) as a standard biquadratic B-spline
over its entire domain. The idea is to set all tile corners correspond-
ing to the same extraordinary vertex to the same value. We find this
value by averaging. The result is that ∂

∂u
D = ∂

∂v
D = 0 at these

tile corners. While this limitation is unfortunate from a modeling
perspective, it is beneficial from a rendering perspective. Evalu-
ation of the displacement function D(u, v) is fast and consistent
since extraordinary vertices do not require branching to specialize
code. Furthermore, we can guarantee that our displacement spline
D(u, v), will be C1 across tile boundaries, for proof see [Reif
1997]. This means that extraordinary vertices will not cause any
shading discontinuities.

4.3 Mip Levels and Global Texture Design

The swimming artifacts associated with the dynamic tessellation
patterns generated by the hardware tessellation unit are under-
sampling artifacts. That is, the underlying displaced surface is a
high frequency signal that is sampled below its Nyquist rate by
the tessellator. This is a classic problem in other context within
computer graphics and signal processing that can effectively be
resolved using mip mapping [Williams 1983]. Therefore, we pre-
compute a full mip map pyramid for each tile. To generate these
mip levels, we tried both Haar wavelets and a wavelet based on
quadratic B-splines, so-called B-wavelets. Haar wavelets corre-
spond to classic 4-way averaging to down-sample mips levels. The
quadratic B-wavelets we used are based on the work of Bertram et
al. [2004] and involve a kernel with larger support.

Once all mip levels have been generated, we pack all tiles includ-
ing its mip levels in a single texture. In order to leverage cache co-
herence, mip levels of individual tiles are stored next to each other
(see Figure 4). While this leaves some unused space, our experi-
ments show that it provides superior performance. In the end we
require (1.5 · tileSize + 4) · (tileSize + 2) texture entries for a
single tile including overlap and mip levels. Additionally, for each
quad face we must store its tile size and an offset to the tile loca-
tion within the global texture in a separate buffer. Tile data is then
indexed by the face ID. Note that local mip level offsets (within a
tile) are computed at runtime and do not require additional storage.

4.4 Non-uniform Tile Sizes

We support distinct tile sizes in order to allow localized detail
within a mesh. As a result there may be adjacent tiles with dis-
tinct resolutions. To avoid cracks, we must ensure the consistency
of data accessed along boundaries between mixed resolution tiles.
To this end, we require that coarser mip levels of a higher resolution
tile correspond to its lower resolution neighbor. This is achieved by
computing tile overlap for each mip level separately at matching
resolutions. Since not all tiles have the same number of mip lev-
els (i.e., they have different resolutions), there are boundaries (at
particular mip levels) where overlap computation cannot be per-
formed.

Tile resolution is characterized by k, where tileSize = 2k (tile
edge length, not including overlap). For each base mesh control
vertex, we determine the incident tile with the highest resolution
k and use this number k as a base value for that vertex. We then
find the differences between the base value of a vertex, and each
incident tile’s highest resolution (one of these is guaranteed to be
zero); we store these differences for each of the four tile corners.
These values are packed into a single 32 bit integer stored per tile
(see Section 5.4).

At runtime we bilinearly interpolate these difference values for
a given u, v parameter value. The tile’s own resolution minus this
interpolated value tells us the maximum (possibly fractional) mip
level that can be accessed for that parameter value. Along edges
between mixed resolution tiles, we will always obtain a consistent
maximum mip level, and hence consistent data accesses. In Sec-
tion 6 we discuss a vertex based level-of-detail scheme and how
mip levels are selected at runtime.

5. SURFACE RENDERING

Hardware tessellation generates triangle meshes on-the-fly by sam-
pling a user defined evaluation procedure for a parametric surface
patch. This paradigm is not compatible with the traditional recur-
sive refinement construction of subdivision surfaces. Several G1

patch based approximate Catmull-Clark schemes have appeared in
recent years (cf. [Myles et al. 2008], [Loop et al. 2009]) to over-
come this difficulty. However, these are not adequate for our pur-
poses, since we require a C2 base surface (in order to guarantee
that the final displaced surface is C1). The direct evaluation pro-
cedure from Stam [1998] could be used to evaluate the base sur-
face. However, our experiments on the GPU indicate that feature
adaptive subdivision described by Nießner et al. [2012] performs
significantly better (see Section 5.4).

5.1 Surface Evaluation

For given u, v coordinates and face ID, we evaluate the displaced
surface

f(u, v) = s(u, v) +Ns(u, v)D(u, v),

corresponding to a texture tile, by evaluating the base patch s(u, v),
its normal Ns(u, v), and the corresponding displacement function
D(u, v). The scalar displacement function is evaluated by select-
ing the 3 × 3 array of coefficients for the biquadratic subpatch of
D(u, v), corresponding to the u, v value within its tile domain. We
transform the patch parameters u, v into the subpatch domain (û, v̂)
using the linear transformation T :

û = T (u) = u− buc+ 1
2
, and v̂ = T (v) = v − bvc+ 1

2
.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

6 • Nießner and Loop

We then evaluate the scalar displacement function

D(u, v) =

2∑
i=0

2∑
j=0

B2
i (T (u))B

2
j (T (v))di,j ,

where di,j are the selected displacement coefficients, and B2
i (u)

are the quadratic B-spline basis functions.
The base surface normal Ns(u, v) is obtained from the partial

derivatives of s(u, v):

Ns(u, v) =
∂
∂u

s(u, v)× ∂
∂v

s(u, v)∥∥ ∂
∂u

s(u, v)× ∂
∂v

s(u, v)
∥∥
2

.

In order to obtain the normal of the displaced surface of f(u, v),
we compute its partial derivatives:

∂

∂u
f(u, v) =

∂

∂u
s(u, v) +

∂

∂u
Ns(u, v)D(u, v) +Ns(u, v)

∂

∂u
D(u, v),

∂
∂v

f(u, v) is similar. Note that the derivatives of the displacement
function are a scaled version of subpatch derivatives:

∂

∂u
D(u, v) = tileSize · ∂

∂û
D̂(û, v̂).

Further, ∂
∂u

s(u, v) can be directly obtained from the base surface.
To find the derivative of Ns(u, v), we note that the derivatives of
the (unnormalized) normal N ∗s(u, v) are found using the Wein-
garten equation [Do Carmo 1976] (E,F,G and e, f, g are the co-
efficients of the first and second fundamental form):

∂

∂u
N ∗s(u, v) =

∂

∂u
s(u, v)

fF − eG

EG− F 2
+

∂

∂v
s(u, v)

eF − fE

EG− F 2
,

∂
∂v

N ∗s(u, v) is similar. From this, we find the derivative of the nor-
malized normal:

∂

∂u
Ns(u, v) =

∂
∂u

N ∗s(u, v)−Ns(u, v)(
∂
∂u

N ∗s(u, v) ·Ns(u, v))

‖N ∗s(u, v)‖2
,

∂
∂v

Ns(u, v) is similar. Finally, we compute ∂
∂u

f(u, v) (analo-
gously ∂

∂v
f(u, v)) and thus the displaced surface normal Nf (u, v).

5.2 Approximate Shading

Since the computation of the derivatives of the base surface nor-
mal using the Weingarten equation is relatively costly, it is possible
to approximate the computation of the displaced surface normal
Nf (u, v). Blinn [1978] suggests ignoring the Weingarten term, re-
sulting in the approximate partial derivative:

∂

∂u
f(u, v) ≈ ∂

∂u
s(u, v) +Ns(u, v)

∂

∂u
D(u, v).

This is reasonable when the displacements are small since the term
∂
∂u

Ns(u, v)D(u, v) becomes negligible. ∂
∂v

f(u, v) can be approx-
imated the same way. We discuss this further in Section 7, and
quantify the performance of approximate versus accurate shading.

5.3 Rendering using Hardware Tessellation

We evaluate the base surface s(u, v), its derivatives ∂
∂u

s(u, v),
∂
∂v

s(u, v) and the displacement function D(u, v) in the domain
shader. Additionally, the derivatives of the normal ∂

∂u
Ns(u, v),

∂
∂v

Ns(u, v) can be evaluated. These results are used to form the
vertices of the triangle mesh generated by the tessellator.

The vertex attributes computed in the domain shader are then in-
terpolated by hardware and available in the pixel shader. In the pixel
shader, we evaluate the derivatives of the displacement function
∂
∂u

D(u, v) and ∂
∂v

D(u, v). This allows us to compute the deriva-
tives of the displaced surface normal ∂

∂u
f(u, v), ∂

∂v
f(u, v) at each

pixel. Therefore, we obtain Nf (u, v) at each pixel that corresponds
to the displaced surface. Evaluating the surface normal Nf (u, v) on
a per vertex basis would degrade rendering quality, due to interpo-
lation artifacts.

As a base surface we tested Stam [1998] evaluation and fea-
ture adaptive subdivision [Nießner et al. 2012]. Both schemes work
well; however, [Nießner et al. 2012] is faster, especially for high
levels of tessellation. We therefore discuss this case in more detail.

5.4 Base Surface Evaluation

Feature adaptive subdivision [Nießner et al. 2012] leverages the
nested polynomial patch structure of Catmull-Clark subdivision.
Regular regions of a control mesh define bicubic B-spline patches
that can be rendered by the hardware tessellator. Further subdivi-
sion is only needed near extraordinary vertices (a type of feature),
to generate more regular regions and more patches. The limit sur-
face will contain an infinite number of smaller and smaller patches
around extraordinary vertices. However, after only a few subdi-
vision levels, these patches will only cover a few pixels. At that
point, adaptive subdivision can stop, and final patches are rendered
as quads. Subdivision is carried out by GPGPU compute kernels
driven by pre-computed index buffers. At each level of subdivi-
sion, regular patches corresponding to that level are generated. Ad-
ditionally, the final extraordinary vertex hole filling quads are gen-
erated for rendering in a separate final pass. The advantage of fea-
ture adaptive subdivision is that the number of subdivision opera-
tions grows linearly with respect to subdivision level, rather than
exponentially as it does when refining the entire mesh at each level.
The high compute-to-memory bandwidth ratio of modern GPUs is
exploited since evaluating bicubic B-splines using hardware tessel-
lation performs better than streaming refined mesh vertices to and
from GPU memory.

Applying the displacement function for level 0 patches is triv-
ial since tiles correspond to patches. At higher subdivision levels,
however, a patch will correspond to a subdomain of a base patch.
Additionally, feature adaptive subdivision may rotate patches (by
j π
2

) to reduce combinatorics. So for each patch we store a local
offset within a tile and its rotation j. The size of a patch domain
is provided by its subdivision level. From these we can selectively
access displacements belonging to a subpatch. After taking patch
subdomains and rotations into account, all patches are rendered
uniformly as described in Section 5.3. In the end we use the fol-
lowing control structure to access displacement data (we only need
16 bytes per patch compared to the 32 byte required by traditional
texturing):

struct {
ushort[2] globalTextureOffsetXY;
ushort[2] localDomainOffsetXY;
ushort tileSize;
ushort rotation;
uchar[4] tileSizeDifferences;

};

Rendering the extraordinary vertex quads (i.e., faces at the finest
subdivision level that are not being further tessellated) requires a

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

Analytic Displacement Mapping using Hardware Tessellation • 7

separate rendering pass. In this case, an exception to the rendering
rule for regular patches occurs. Due to the singularity in the subdi-
vision surface parameterization at extraordinary vertices, the direc-
tions ∂

∂u
s and ∂

∂v
s are not consistently defined (as they are at all

other points of the surface). However, the base surface limit normal
Ns is well defined at extraordinary vertices. So to obtain a consis-
tent normal over these final quads (in particular along quad edges),
we bilinearly blend between the limit normal Ns, and the displaced
surface normal Nf involving the interpolated partials ∂

∂u
s × ∂

∂v
s.

The blending function equals 1 at extraordinary vertices (for Ns)
and 0 at other quad corners (for Nf), and is performed on a per frag-
ment basis without requiring the evaluation of the Weingarten term
at the extraordinary point. Fortunately, since the quads incident on
extraordinary vertices are rendered separately, there are no measur-
able extra costs for this special treatment. Also note that the partial
derivatives of the displacement function D(u, v) are restricted to
be 0 at extraordinary vertices (see Section 4.2); thus, the resulting
surface will be C1 and correspond to the displacement data.

6. LEVEL-OF-DETAIL

Hardware tessellation is controlled by user specified tessellation
(tess) factors assigned per patch in a hull shader program. The
fixed function tessellator unit then generates an appropriate sam-
pling pattern to match these inputs. This is particularly effective in
the context of displacement mapping since detail can be added and
removed at runtime. However, under-sampling occurs when the res-
olution of the sampling pattern is insufficient to reconstruct the high
frequency displacement detail. This can lead to swimming artifacts
since minor tess factor changes can cause significant changes in the
resulting surface. Our solution is to select mip levels based on the
tessellation density in order to avoid under-sampling artifacts.

6.1 Tessellation Factor Estimation

We first estimate tess factors; this includes two interior tess factors
per patch, as well as a tess factor for edge patch. Adjacent patches
must have the same tess factors assigned along shared edges in or-
der to guarantee crack-free rendering. Our approach is to determine
a tessellation density value for each vertex of the base mesh in a
compute shader kernel, and then to propagate these values to the
(sub) patches corners using bilinear subdivision.

We determine tess factors TF for base mesh vertices v (with
edges e) using one of these simple methods (c is a user defined
constant):

—Distance based: TF = c · ‖eye − v‖2
—Screen space area based: TF = c ·

√∑
ei × ei+1

—Screen space edge length based: TF = c ·maxi ‖ei‖2
More elaborated methods that take surface curvature into account
are also possible, but would require greater computational effort.

Once tess factors have been computed for patch corners, we as-
sign patch edge tess factors as the maximum of the two incident
corner tess factors. We treat inner tess factors analogously (maxi-
mum of opposite edge tess factors in u and v directions).

6.2 Mip Level Selection

The tess factors computed for each of the four patch corners are
passed to the domain shader and are bilinearly interpolated produc-
ing the function TF (u, v). Based on this interpolant we select the
two adjacent mip levels blog2(TF (u, v))c and dlog2(TF (u, v))e
and linearly interpolate the resulting displacements (including the

derivatives). We must also clamp this value to the maximum mip
level determined in Section 4.4 in order to provide consistent results
at shared boundaries where tiles with distinct resolutions meet. This
allows us to guarantee a specific sampling rate of the displacement
map in order to avoid under-sampling.

7. RESULTS

Our implementation uses DirectX 11 with shader code written in
HLSL. Timing measurements were made on a NVIDIA GeForce
GTX 480 and are provided in milliseconds.

In order to test our method we extracted displacement values
from two representative models, the Dragon Head and the Monster
Frog. Figure 1 shows the rendering with, and without, displace-
ments including the control mesh of the base mesh. For these im-
ages the approximate variant (see Section 5.2) without the Wein-
garten term is used and the level-of-detail computation (see Sec-
tion 6) is omitted. Displacements are stored using 16 bit floating
points and a tile size of 16×16 (overall 2.7 MB) and 8×8 (overall
413 KB), respectively. Tessellation factors are determined adap-
tively based on the camera distance (637K and 328K triangles are
generated) so that the models are rendered with our algorithm in
1.7 ms and 1.3 ms. Note that we also tried 32 bit floating point
displacement values; both performance and visual quality changes
were insignificant.

Figure 5 depicts the level-of-detail scheme proposed in Section 6
(again the Weingarten term is ignored). By blending between adja-
cent mip levels we achieve smooth level-of-detail transitions. We
found that using Harr wavelets provided smoother results, whereas
biquadratic B-wavelets preserved more detail in down sampled mip
levels. Results shown here and in the video use the Haar wavelet
mip level variant. Detail is dynamically added with an increased
tessellation rate and vice versa. This enforces a certain sampling
rate of the displacement values and thus prevents under-sampling
artifacts. For these images (from left to right) tess factors 2, 4, 8,
16 are chosen resulting in rendertimes 0.6 ms, 1.0 ms, 1.7 ms, 3.3
ms, respectively.

The difference between accurate and approximate normal com-
putation (with and without the Weingarten term) is shown in Fig-
ure 6 for the Dragon Head and Monster Frog. Patches with large
displacement offsets and high curvatures show the most difference;
elsewhere the results are visually indistinguishable. For these ren-
der settings (same as in Figure 1), taking the Weingarten term into
account increases the rendertime from 1.7 ms to 2.6 ms and from
1.3 ms to 1.9 ms, respectively. Considering the minor shading im-
provements but the major performance decrease the accurate vari-
ant seems to be less appropriate for real-time entertainment appli-
cations.

Figure 7 shows performance results of our method with various
setups using different tess factors. Rendering the basic version of
our method (i.e., without level-of-detail and without Weingarten
term) is only slightly slower than rendering the base surface without
displacements at all. Both level-of-detail and accurate normal com-
putation come at some costs, whereas taking the Weingarten term
into account affects performance more drastically. We also com-
pare our method against traditional displacement mapping com-
bined with tangent space normal mapping. While the resulting sur-
faces of our method (basic version) and the traditional approach
are about the same, our method achieves higher frame rates. This is
attributed to the fact that we only require a single displacement tex-
ture rather than a separate displacement and normal map. Also note
that tangent space normal mapping has issues with texture seams,

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

8 • Nießner and Loop

Fig. 5. Our level-of-detail scheme; pre-computed mip levels are selected based on the tess factors. These images (from left to right) are rendered using tess
factors 2, 4, 8, 16 resulting in rendertimes 0.6 ms, 1.0 ms, 1.7 ms, 3.3 ms. Also note that we are linearly blending between two adjacent mip levels in order to
obtain a smooth transition between selected levels.

Fig. 6. Difference (Euclidean color distance in HSV) between the approxi-
mate normal computation and the accurate variant that takes the Weingarten
term into account. Patches with large displacement offsets and high curva-
ture are most different. For this setting (same as in Figure 1) the accurate
variant is 46% and 53%, respectively, slower than the approximation.

under-sampling artifacts, and does not support dynamic displace-
ments.

8. CONCLUSION

We have presented a method for rendering displaced Catmull-Clark
subdivision surfaces that avoids typical artifacts that have limited
their use on GPUs with hardware tessellation. These include tex-
ture seams, the need for normal maps to provide appropriate high
frequency shading, and under-sampling that causes swimming. We
introduced a tile based texture format for the GPU and defined an
analytically smooth displacement surface using a biquadratic dis-
placement function. Data for this function can be obtained by tradi-
tional displacement extraction (e.g., MudBox or ZBrush) or direct
authoring as demonstrated in the accompanied video. We believe
these advances will be useful in both the context of authoring, as
well as in the runtime engine, where our method provides highly
accurate shading of detailed models at high frame rates.

ACKNOWLEDGMENTS
We would like to thank Bay Raitt of Valve Software for the Monster
Frog model. Further, we would like to thank the Blender Founda-
tion for the Dragon Head that we took from the DVD of the open
movie Sintel (www.sintel.org).

REFERENCES

BERTRAM, M. 2004. Lifting biorthogonal b-spline wavelets. Geometric
Modeling for Scientific Visualization, 153.

0

5

10

15

20

1 2 4 8 16 32

R
e

n
d

e
rt

im
e

 (
m

s)

D
ra

g
o

n
 H

ea
d

Tessellation Factor

No Displacement

Our Displacement

Traditional Displacement w/ Normal Mapping

Our Displacement w/ LOD

Our Displacement w/ Weingarten

Our Displacement w/ LOD and w/ Weingarten

0

2

4

6

8

10

12

14

1 2 4 8 16 32

R
e

n
d

e
rt

im
e

 (
m

s)

M
o

n
st

er
 F

ro
g

Tessellation Factor

No Displacement

Our Displacement

Traditional Displacement w/ Normal Mapping

Our Displacement w/ LOD

Our Displacement w/ Weingarten

Our Displacement w/ LOD and w/ Weingarten

Fig. 7. Performance results for rendering the base surface, rendering the
displaced surface using our method with various setups, and a comparison
against traditional displacements combined with tangent space normal map-
ping. Note that traditional displacement mapping is always slower than our
basic method even so dynamic tangent and bitangent computation (required
for animation) is omitted.

BLINN, J. 1978. Simulation of wrinkled surfaces. In ACM SIGGRAPH
Computer Graphics. Vol. 12. ACM, 286–292.

BUNNELL, M. 2005. Adaptive Tessellation of Subdivision Surfaces with
Displacement Mapping. GPU Gems 2, 109–122.

BURLEY, B. AND LACEWELL, D. 2008. Ptex: Per-Face Texture Mapping

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

Analytic Displacement Mapping using Hardware Tessellation • 9

for Production Rendering. In Computer Graphics Forum. Vol. 27. Wiley
Online Library, 1155–1164.

CATMULL, E. AND CLARK, J. 1978. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer-aided design 10, 6,
350–355.

COOK, R. 1984. Shade trees. In Computer Graphics (SIGGRAPH 84 Pro-
ceedings).

DO CARMO, M. 1976. Differential geometry of curves and surfaces. Vol. 1.
Prentice-Hall.

DOO, D. 1978. A Subdivision Algorithm for Smoothing Down Irregularly
Shaped Polyhedrons. In Proceedings on Interactive Techniques in Com-
puter Aidied Design, Bologna, Italy. IEEE, 157–165.

GONZÁLEZ, F. AND PATOW, G. 2009. Continuity mapping for multi-chart
textures. In ACM Transactions on Graphics (TOG). Vol. 28. ACM, 109.

GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P. 2000.
Normal meshes. In SIGGRAPH Proceedings. ACM Press/Addison-
Wesley Publishing Co., 95–102.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair inter-
polation using Catmull-Clark surfaces. In Proceedings of the 20th annual
conference on Computer graphics and interactive techniques. ACM, 35–
44.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced subdivision
surfaces. In SIGGRAPH Proceedings. ACM Press/Addison-Wesley Pub-
lishing Co., 85–94.

LOOP, C. 1987. Smooth subdivision surfaces based on triangles. M.S.
thesis, University of Utah.

LOOP, C., SCHAEFER, S., NI, T., AND CASTANO, I. 2009. Approximating
subdivision surfaces with gregory patches for hardware tessellation. In
ACM Transactions on Graphics (TOG). Vol. 28. ACM, 151.

MYLES, A., NI, T., AND PETERS, J. 2008. Fast parallel construction of
smooth surfaces from meshes with tri/quad/pent facets. Computer Graph-
ics Forum 27, 5, 1365–1372.

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012. Feature-
adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM
Transactions on Graphics (TOG) 31, 1, 6.

PATNEY, A., EBEIDA, M., AND OWENS, J. 2009. Parallel view-dependent
tessellation of Catmull-Clark subdivision surfaces. In Proceedings of the
Conference on High Performance Graphics 2009. ACM, 99–108.

PURNOMO, B., COHEN, J., AND KUMAR, S. 2004. Seamless texture at-
lases. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing. ACM, 65–74.

RAY, N., NIVOLIERS, V., LEFEBVRE, S., AND LÉVY, B. 2010. Invisible
Seams. In Computer Graphics Forum. Vol. 29. Wiley Online Library,
1489–1496.

REIF, U. 1997. A refineable space of smooth spline surfaces of arbitrary
topological genus. Journal of Approximation Theory 90, 2, 174–199.

SANDER, P., WOOD, Z., GORTLER, S., SNYDER, J., AND HOPPE, H.
2003. Multi-chart geometry images. In Proceedings of the 2003 Eu-
rographics/ACM SIGGRAPH symposium on Geometry processing. 146–
155.

SCHÄFER, H., PRUS, M., MEYER, Q., SÜSSMUTH, J., AND STAM-
MINGER, M. 2012. Multiresolution Attributes for Tessellated Meshes.

SHIUE, L., JONES, I., AND PETERS, J. 2005. A realtime GPU subdivision
kernel. ACM Transactions on Graphics (TOG) 24, 3, 1010–1015.

STAM, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at
arbitrary parameter values. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques. ACM, 395–404.

SZIRMAY-KALOS, L. AND UMENHOFFER, T. 2008. Displacement Map-
ping on the GPU-State of the Art. In Computer Graphics Forum. Vol. 27.
Wiley Online Library, 1567–1592.

TATARCHUK, N., BARCZAK, J., AND BILODEAU, B. 2010. Programming
for real-time tessellation on gpu. AMD whitepaper 5.

WILLIAMS, L. 1983. Pyramidal parametrics. In Computer Graphics (SIG-
GRAPH 83 Proceedings).

YUKSEL, C., KEYSER, J., AND HOUSE, D. 2010. Mesh colors. ACM
Transactions on Graphics (TOG) 29, 2, 15.

Received September 2008; accepted March 2009

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.

