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Matthias Nießner1,3 Michael Zollhöfer1 Shahram Izadi2 Marc Stamminger1
1University of Erlangen-Nuremberg 2Microsoft Research Cambridge 3Stanford University

Figure 1: Example output from our reconstruction system without any geometry post-processing. Scene is about 20m wide and 4m high and
captured online in less than 5 minutes with live feedback of the reconstruction.

Abstract

Online 3D reconstruction is gaining newfound interest due to the
availability of real-time consumer depth cameras. The basic problem
takes live overlapping depth maps as input and incrementally fuses
these into a single 3D model. This is challenging particularly when
real-time performance is desired without trading quality or scale. We
contribute an online system for large and fine scale volumetric recon-
struction based on a memory and speed efficient data structure. Our
system uses a simple spatial hashing scheme that compresses space,
and allows for real-time access and updates of implicit surface data,
without the need for a regular or hierarchical grid data structure. Sur-
face data is only stored densely where measurements are observed.
Additionally, data can be streamed efficiently in or out of the hash
table, allowing for further scalability during sensor motion. We show
interactive reconstructions of a variety of scenes, reconstructing both
fine-grained details and large scale environments. We illustrate how
all parts of our pipeline from depth map pre-processing, camera pose
estimation, depth map fusion, and surface rendering are performed at
real-time rates on commodity graphics hardware. We conclude with
a comparison to current state-of-the-art online systems, illustrating
improved performance and reconstruction quality.
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1 Introduction

While 3D reconstruction is an established field in computer vision
and graphics, it is now gaining newfound momentum due to the
wide availability of depth cameras (such as the Microsoft Kinect and
Asus Xtion). Since these devices output live but noisy depth maps, a
particular focus of recent work is online surface reconstruction using
such consumer depth cameras. The ability to obtain reconstructions
in real-time opens up various interactive applications including:
augmented reality (AR) where real-world geometry can be fused
with 3D graphics and rendered live to the user; autonomous guidance
for robots to reconstruct and respond rapidly to their environment;
or even to provide immediate feedback to users during 3D scanning.

Online reconstruction requires incremental fusion of many overlap-
ping depth maps into a single 3D representation that is continuously
refined. This is challenging particularly when real-time performance
is required without trading fine-quality reconstructions and spatial
scale. Many state-of-the-art online techniques therefore employ
different types of underlying data structures accelerated using graph-
ics hardware. These however have particular trade-offs in terms of
reconstruction speed, scale, and quality.

Point-based methods (e.g., [Rusinkiewicz et al. 2002; Weise et al.
2009]) use simple unstructured representations that closely map
to range and depth sensor input, but lack the ability to directly
reconstruct connected surfaces. High-quality online scanning of
small objects has been demonstrated [Weise et al. 2009], but larger-
scale reconstructions clearly trade quality and/or speed [Henry et al.
2012; Stückler and Behnke 2012]. Height-map based representa-
tions [Pollefeys et al. 2008; Gallup et al. 2010] support efficient
compression of connected surface data, and can scale efficiently to
larger scenes, but fail to reconstruct complex 3D structures.

For active sensors, implicit volumetric approaches, in particular the
method of Curless and Levoy [1996], have demonstrated compelling
results [Curless and Levoy 1996; Levoy et al. 2000; Zhou and Koltun
2013], even at real-time rates [Izadi et al. 2011; Newcombe et al.
2011]. However, these rely on memory inefficient regular voxel
grids, in turn restricting scale. This has led to either moving volume
variants [Roth and Vona 2012; Whelan et al. 2012], which stream
voxel data out-of-core as the sensor moves, but still constrain the size
of the active volume. Or hierarchical data structures that subdivide
space more effectively, but do not parallelize efficiently given added
computational complexity [Zeng et al. 2012; Chen et al. 2013].
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We contribute a new real-time surface reconstruction system which
supports fine-quality reconstructions at scale. Our approach carries
the benefits of volumetric approaches, but does not require either a
memory constrained voxel grid or the computational overheads of a
hierarchical data structure. Our method is based on a simple memory
and speed efficient spatial hashing technique that compresses space,
and allows for real-time fusion of referenced implicit surface data,
without the need for a hierarchical data structure. Surface data
is only stored densely in cells where measurements are observed.
Additionally, data can be streamed efficiently in or out of the hash
table, allowing for further scalability during sensor motion.

While these types of efficient spatial hashing techniques have been
proposed for a variety of rendering and collision detection tasks
[Teschner et al. 2003; Lefebvre and Hoppe 2006; Bastos and Celes
2008; Alcantara et al. 2009; Pan and Manocha 2011; Garcı́a et al.
2011], we describe the use of such data structures for surface re-
construction, where the underlying data needs to be continuously
updated. We show interactive reconstructions of a variety of scenes,
reconstructing both fine-grained and large-scale environments. We il-
lustrate how all parts of our pipeline from depth map pre-processing,
sensor pose estimation, depth map fusion, and surface rendering
are performed at real-time rates on commodity graphics hardware.
We conclude with a comparison to current state-of-the-art systems,
illustrating improved performance and reconstruction quality.

2 Related work

There is over three decades of research on 3D reconstruction. In this
section we review relevant systems, with a focus on online recon-
struction methods and active sensors. Unlike systems that focus on
reconstruction from a complete set of 3D points [Hoppe et al. 1992;
Kazhdan et al. 2006], online methods require incremental fusion of
many overlapping depth maps into a single 3D representation that
is continuously refined. Typically methods first register or align
sequential depth maps using variants of the Iterative Closest Point
(ICP) algorithm [Besl and McKay 1992; Chen and Medioni 1992].

Parametric methods [Chen and Medioni 1992; Higuchi et al. 1995]
simply average overlapping samples, and connect points by assum-
ing a simple surface topology (such as a cylinder or a sphere) to
locally fit polygons. Extensions such as mesh zippering [Turk and
Levoy 1994] select one depth map per surface region, remove re-
dundant triangles in overlapping regions, and stitch meshes. These
methods handle some denoising by local averaging of points, but
are fragile in the presence of outliers and areas with high curvature.
These challenges associated with working directly with polygon
meshes have led to many other reconstruction methods.

Point-based methods perform reconstruction by merging overlap-
ping points, and avoid inferring connectivity. Rendering the final
model is performed using point-based rendering techniques [Gross
and Pfister 2007]. Given the output from most depth sensors are
3D point samples, it is natural for reconstruction methods to work
directly with such data. Examples include in-hand scanning sys-
tems [Rusinkiewicz et al. 2002; Weise et al. 2009], which support
reconstruction of only single small objects. At this small scale,
high-quality [Weise et al. 2009] reconstructions have been achieved.
Larger scenes have been reconstructed by trading real-time speed
and quality [Henry et al. 2012; Stückler and Behnke 2012]. These
methods lack the ability to directly model connected surfaces, requir-
ing additional expensive and often offline steps to construct surfaces;
e.g., using volumetric data structures [Rusinkiewicz et al. 2002].

Height-map based representations explore the use of more compact
2.5D continuous surface representations for reconstruction [Polle-
feys et al. 2008; Gallup et al. 2010]. These techniques are partic-
ularly useful for modeling large buildings with floors and walls,

since these appear as clear discontinuities in the height-map. Multi-
layered height-maps have been explored to support reconstruction of
more complex 3D shapes such as balconies, doorways, and arches
[Gallup et al. 2010]. While these methods support more efficient
compression of surface data, the 2.5D representation fails to recon-
struct many types of complex 3D structures.

An alternative method is to use a fully volumetric data structure
to implicitly store samples of a continuous function [Hilton et al.
1996; Curless and Levoy 1996; Wheeler et al. 1998]. In these
methods, depth maps are converted into signed distance fields and
cumulatively averaged into a regular voxel grid. The final surface is
extracted as the zero-level set of the implicit function using isosur-
face polygonisation (e.g., [Lorensen and Cline 1987]) or raycasting.
A well-known example is the method of Curless and Levoy [1996],
which for active triangulation-based sensors such as laser range
scanners and structured light cameras, can generate very high qual-
ity results [Curless and Levoy 1996; Levoy et al. 2000; Zhou and
Koltun 2013]. KinectFusion [Newcombe et al. 2011; Izadi et al.
2011] recently adopted this volumetric method and demonstrated
compelling real-time reconstructions using a commodity GPU.

While shown to be a high quality reconstruction method, particularly
given the computational cost, this approach suffers from one major
limitation: the use of a regular voxel grid imposes a large memory
footprint, representing both empty space and surfaces densely, and
thus fails to reconstruct larger scenes without compromising quality.

Scaling-up Volumetric Fusion Recent work begins to address
this spatial limitation of volumetric methods in different ways.
[Keller et al. 2013] use a point-based representation that captures
qualities of volumetric fusion but removes the need for a spatial data
structure. While demonstrating compelling scalable real-time recon-
structions, the quality is not on-par with true volumetric methods.

Moving volume methods [Roth and Vona 2012; Whelan et al. 2012]
extend the GPU-based pipeline of KinectFusion. While still operat-
ing on a very restricted regular grid, these methods stream out voxels
from the GPU based on camera motion, freeing space for new data
to be stored. In these methods the streaming is one-way and lossy.
Surface data is compressed to a mesh, and once moved to host can-
not be streamed back to the GPU. While offering a simple approach
for scalability, at their core these systems still use a regular grid
structure, which means that the active volume must remain small to
ensure fine-quality reconstructions. This limits reconstructions to
scenes with close-by geometric structures, and cannot utilize the full
range of data for active sensors such as the Kinect.

This limit of regular grids has led researcher to investigate more
efficient volumetric data structures. This is a well studied topic in
the volume rendering literature, with efficient methods based on
sparse voxel octrees [Laine and Karras 2011; Kämpe et al. 2013],
simpler multi-level hierarchies and adaptive data structures [Kraus
and Ertl 2002; Lefebvre et al. 2005; Bastos and Celes 2008; Reichl
et al. 2012] and out-of-core streaming architectures for large datasets
[Hadwiger et al. 2012; Crassin et al. 2009]. These approaches have
begun to be explored in the context of online reconstruction, where
the need to support real-time updates of the underlying data adds a
fundamentally new challenge.

For example, [Zhou et al. 2011] demonstrate a GPU-based octree
which can perform Poisson surface reconstruction on 300K vertices
at interactive rates. [Zeng et al. 2012] implement a 9- to 10-level
octree on the GPU, which extends the KinectFusion pipeline to a
larger 8m × 8m × 2m indoor office space. The method however
requires a complex octree structure to be implemented, with addi-
tional computational complexity and pointer overhead, with only
limited gains in scale.



In an octree, the resolution in each dimension increases by a factor
of two at each subdivision level. This results in the need for a deep
tree structure for efficient subdivision, which conversely impacts
performance, in particular on GPUs where tree traversal leads to
thread divergence. The rendering literature has proposed many alter-
native hierarchical data structures [Lefebvre et al. 2005; Kraus and
Ertl 2002; Laine and Karras 2011; Kämpe et al. 2013; Reichl et al.
2012]. In [Chen et al. 2013] an N3 hierarchy [Lefebvre et al. 2005]
was adopted for 3D reconstruction at scale, and the optimal tree
depth and branching factor were empirically derived (showing large
branching factors and a shallow tree optimizes GPU performance).
While avoiding the use of an octree, the system still carries compu-
tational overheads in realizing such a hierarchical data structure on
the GPU. As such this leads to performance that is only real-time on
specific scenes, and on very high-end graphics hardware.

3 Algorithm Overview

We extend the volumetric method of Curless and Levoy [1996] to
reconstruct high-quality 3D surfaces in real-time and at scale, by
incrementally fusing noisy depth maps into a memory and speed
efficient data structure. Curless and Levoy have proven to produce
compelling results given a simple cumulative average of samples.
The method supports incremental updates, makes no topological
assumptions regarding surfaces, and approximates the noise charac-
teristics of triangulation based sensors effectively. Further, while an
implicit representation, stored isosurfaces can be readily extracted.
Our method addresses the main drawback of Curless and Levoy:
supporting efficient scalability. Next, we review the Curless and
Levoy method, before the description of our new approach.

Implicit Volumetric Fusion Curless and Levoy’s method is based
on storing an implicit signed distance field (SDF) within a volumetric
data structure. Let us consider a regular dense voxel grid, and assume
the input is a sequence of depth maps. The depth sensor is initialized
at some origin relative to this grid (typically the center of the grid).
First, the rigid six degree-of-freedom (6DoF) ego-motion of the
sensor is estimated, typically using variants of ICP [Besl and McKay
1992; Chen and Medioni 1992].

Each voxel in the grid contains two values: a signed distance and
weight. For a single depth map, data is integrated into the grid by
uniformly sweeping through the volume, culling voxels outside of
the view frustum, projecting all voxel centers into the depth map,
and updating stored SDF values. All voxels that project onto the
same pixel are considered part of the depth sample’s footprint. At
each of these voxels a signed distance from the voxel center to the
observed surface measurement is stored, with positive distances in
front, negative behind, and nearing zero at the surface interface.

To reduce computational cost, support sensor motion, and approx-
imate sensor noise, Curless and Levoy introduce the notion of a
truncated SDF (TSDF) which only stores the signed distance in a
region around the observed surface. This region can be adapted in
size, approximating sensor noise as a Gaussian with variance based
on depth [Chang et al. 1994; Nguyen et al. 2012]. Only TSDF values
stored in voxels within these regions are updated using a weighted
average to obtain an estimate of the surface. Finally, voxels (in front
of the surface) that are part of each depth sample’s footprint, but
outside of the truncation region are explicitly marked as free-space.
This allows removal of outliers based on free-space violations.

Voxel Hashing Given Curless and Levoy truncate SDFs around
the surface, the majority of data stored in the regular voxel grid is
marked either as free space or as unobserved space rather than sur-
face data. The key challenge becomes how to design a data structure

that exploits this underlying sparsity in the TSDF representation.

Our approach specifically avoids the use of a dense or hierarchical
data structure, removing the need for a memory intensive regular
grid or computationally complex hierarchy for volumetric fusion.
Instead, we use a simple hashing scheme to compactly store, access
and update an implicit surface representation.

In the graphics community, efficient spatial hashing methods have
been explored in the context of a variety of 2D/3D rendering and
collision detection tasks [Teschner et al. 2003; Lefebvre and Hoppe
2006; Bastos and Celes 2008; Alcantara et al. 2009; Pan and
Manocha 2011; Garcı́a et al. 2011]. Sophisticated methods have
been proposed for efficient GPU-based hashing that greatly reduce
the number of hash entry collisions.

Our goal is to build a real-time system that employs a spatial hashing
scheme for scalable volumetric reconstruction. This is non-trivial
for 3D reconstruction as the geometry is unknown ahead of time
and continually changing. Therefore, our hashing technique must
support dynamic allocations and updates, while minimizing and
resolving potential hash entry collisions, without requiring a-priori
knowledge of the contained surface geometry. In approaching the de-
sign of our data structure, we have purposefully chosen and extended
a simple hashing scheme [Teschner et al. 2003], and while more
sophisticated methods exist, we show empirically that our method is
efficient in terms of speed, quality, and scalability.

The hash table sparsely and efficiently stores and updates TSDFs.
In the following we describe the data structure in more detail, and
demonstrate how it can be efficiently implemented on the GPU. We
highlight some of the core features of our data structure, including:

• The ability to efficiently compress volumetric TSDFs, while
maintaining surface resolution, without the need for a hierar-
chical spatial data structure.

• Fusing new TSDF samples efficiently into the hash table, based
on insertions and updates, while minimizing collisions.

• Removal and garbage collection of voxel blocks, without re-
quiring costly reorganization of the data structure.

• Lightweight bidirectional streaming of voxel blocks between
host and GPU, allowing unbounded reconstructions.

• Extraction of isosurfaces from the data structure efficiently
using standard raycasting or polygonization operations, for
rendering and camera pose estimation.

System Pipeline Our pipeline is depicted in Fig. 2. Central is
a hash table data structure that stores sub-blocks containing SDFs,
called voxel blocks. Each occupied entry in our hash table refers to
an allocated voxel block. At each voxel we store a TSDF, weight,
and an additional color value. The hash table is unstructured; i.e.,
neighboring voxel blocks are not stored spatially, but can be in
different parts of the hash table. Our hashing function allows an
efficient look-up of voxel blocks, using specified (integer rounded)
world coordinates. Our hash function aims to minimize the number
of collisions and ensures no duplicates exist in the table.

Given a new input depth map, we begin by performing fusion (also
referred to as integration). We first allocate new voxel blocks and
insert block descriptors into the hash table, based on an input depth
map. Only occupied voxels are allocated and empty space is not
stored. Next we sweep each allocated voxel block to update the SDF,
color and weight of each contained voxel, based on the input depth
and color samples. In addition, we garbage collect voxel blocks
which are too far from the isosurface and contain no weight. This
involves freeing allocated memory as well as removing the voxel



block entry from the hash table. These steps ensure that our data
structure remains sparse over time.

Figure 2: Pipeline overview.

After integration, we raycast the implicit surface from the current
estimated camera pose to extract the isosurface, including associated
colors. This extracted depth and color buffer is used as input for
camera pose estimation: given the next input depth map, a projective
point-plane ICP [Chen and Medioni 1992] is performed to estimate
the new 6DoF camera pose. This ensures that pose estimation is
performed frame-to-model rather than frame-to-frame mitigating
some of the issues of drift (particularly for small scenes) [Newcombe
et al. 2011]. Finally, our algorithm performs bidirectional streaming
between GPU and host. Hash entries (and associated voxel blocks)
are streamed to the host as their world positions exit the estimated
camera view frustum. Previously streamed out voxel blocks can also
be streamed back to the GPU data structure when revisiting areas.

4 Data Structure

Fig. 3 shows our voxel hashing data structure. Conceptually, an
infinite uniform grid subdivides the world into voxel blocks. Each
block is a small regular voxel grid. In our current implementation a
voxel block is composed of 83 voxels. Each voxel stores a TSDF,
color, and weight and requires 8 bytes of memory:

struct Voxel {
float sdf;
uchar colorRGB[3];
uchar weight;

};

To exploit sparsity, voxel blocks are only allocated around recon-
structed surface geometry. We use an efficient GPU accelerated hash
table to manage allocation and retrieval of voxel blocks. The hash
table stores hash entries, each containing a pointer to an allocated
voxel block. Voxel blocks can be retrieved from the hash table using
integer world coordinates (x, y, z). Finding the coordinates for a
3D point in world space is achieved by simple multiplication and
rounding. We map from a world coordinate (x, y, z) to hash value
H(x, y, z) using the following hashing function:

H(x, y, z) = (x · p1 ⊕ y · p2 ⊕ z · p3)modn

where p1, p2, and p3 are large prime numbers (in our case 73856093,
19349669, 83492791 respectively, based on [Teschner et al. 2003]),
and n is the hash table size. In addition to storing a pointer to the
voxel block, each hash entry also contains the associated world posi-
tion, and an offset pointer to handle collisions efficiently (described
in the next section).

struct HashEntry {
short position[3];
short offset;
int pointer;

};

world

hash
table

voxel
blocks

bucket

Figure 3: Our voxel hashing data structure. Conceptually, an
infinite uniform grid partitions the world. Using our hash function,
we map from integer world coordinates to hash buckets, which store
a small array of pointers to regular grid voxel blocks. Each voxel
block contains an 83 grid of SDF values. When information for the
red block gets added, a collision appears which is resolved by using
the second element in the hash bucket.

4.1 Resolving Collisions

Collisions appear if multiple allocated blocks are mapped to the
same hash value (see red block in Fig. 3). We handle collisions by
uniformly organizing the hash table into buckets, one per unique
hash value. Each bucket sequentially stores a small number of hash
entries. When a collision occurs, we store the block pointer in the
next available sequential entry in the bucket (see Fig. 4). To find
the voxel block for a particular world position, we first evaluate our
hash function, and lookup and traverse the associated bucket until
our block entry is found. This is achieved by simply comparing the
stored hash entry world position with the query position.

With a reasonable selection of the hash table and bucket size (see
later), rarely will a bucket overflow. However, if this happens, we
append a linked list entry, filling up other free spots in the next
available buckets. The (relative) pointers for the linked lists are
stored in the offset field of the hash table entries. Such a list is
appended to a full bucket by setting the offset pointer for the last
entry in the bucket. All following entries are then chained using
the offset field. In order to create additional links for a bucket, we
linearly search across the hash table for a free slot to store our entry,
appending to the link list accordingly. We avoid the last entry in
each bucket, as this is locally reserved for the link list head.

As shown later, we choose a table and bucket size that keeps the num-
ber of collisions and therefore appended linked lists to a minimum
for most scenes, as to not impact overall performance.

4.2 Hashing operations

Insertion To insert new hash entries, we first evaluate the hash
function and determine the target bucket. We then iterate over all
bucket elements including possible lists attached to the last entry.
If we find an element with the same world space position we can
immediately return a reference. Otherwise, we look for the first
empty position within the bucket. If a position in the bucket is
available, we insert the new hash entry. If the bucket is full, we
append an element to its linked list element (see Fig. 4).

To avoid race conditions when inserting hash entries in parallel, we
lock a bucket atomically for writing when a suitable empty position



is found. This eliminates duplicate entries and ensures linked list
consistency. If a bucket is locked for writing, all other allocations
for the same bucket are staggered until the next frame is processed.
This may delay some allocations marginally. However, in practice
this causes no degradation in reconstruction quality (as observed in
the results and supplementary video), particularly as the Curless and
Levoy method supports order independent updates.

Retrieval To read the hash entry for a query position, we compute
the hash value and perform a linear search within the correspond-
ing bucket. If no entry is found, and the bucket has a linked list
associated (the offset value of the last entry is set), we also have to
traverse this list. Note that we do not require a bucket to be filled
from left to right. As described below, removing values can lead
to fragmentation, so traversal does not stop when empty entries are
found in the bucket.
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Figure 4: The hash table is broken down into a set of buckets.
Each slot is either unallocated (white) or contains an entry (blue)
storing the query world position, pointer to surface data, and an
offset pointer for dealing with bucket overflow. Example hashing
operations: for illustration, we insert and remove four entries that
all map to hash = 1 and update entries and pointers accordingly.

Deletion Deleting a hash entry is similar to insertion. For a given
world position we first compute the hash and then linearly search
the corresponding hash bucket including list traversal. If we have
found the matching entry without list traversal we can simply delete
it. If it is the last element of the bucket and there was a non-zero
offset stored (i.e., the element is a list head), we copy the hash
entry pointed to by the offset into the last element of the bucket,
and delete it from its current position. Otherwise if the entry is a
(non-head) element in the linked list, we delete it and correct list
pointers accordingly (see Fig. 4). Synchronization is not required
for deletion directly within the bucket. However, in the case we need
to modify the linked list, we lock the bucket atomically and stagger
further list operations for this bucket until the next frame.

5 Voxel Block Allocation

Before integration of new TSDFs, voxel blocks must be allocated
that fall within the footprint of each input depth sample, and are also
within the truncation region of the surface measurement. We process

depth samples in parallel, inserting hash entries and allocating voxel
blocks within the truncation region around the observed surface. The
size of the truncation is adapted based on the variance of depth to
compensate for larger uncertainty in distant measurements [Chang
et al. 1994; Nguyen et al. 2012].

For each input depth sample, we instantiate a ray with an interval
bound to the truncation region. Given the predefined voxel resolu-
tion and block size, we use DDA [Amanatides and Woo 1987] to
determine all the voxel blocks that intersect with the ray. For each
candidate found, we insert a new voxel block entry into the hash
table. In an idealized case, each depth sample would be modeled as
an entire frustum rather than a single ray. We would then allocate all
voxel blocks within the truncation region that intersect with this frus-
tum. In practice however, this leads to degradation in performance
(currently 10-fold). Our ray-based approximation provides a balance
between performance and precision. Given the continuous nature of
the reconstruction, the frame rate of the sensor, and the mobility of
the user, this in practice leads to no holes appearing between voxel
blocks at larger distances (see results and accompanying video).

Once we have successfully inserted an entry into the hash table,
we allocate a portion of preallocated heap memory on the GPU to
store voxel block data. The heap is a linear array of memory, allo-
cated once upon initialization. It is divided into contiguous blocks
(mapping to the size of voxel blocks), and managed by maintaining
a list of available blocks. This list is a linear buffer with indices
to all unallocated blocks. A new block is allocated using the last
index in the list. If a voxel block is subsequently freed, its index is
appended to the end of the list. Since the list is accessed in parallel,
synchronization is necessary, by incrementing or decrementing the
end of list pointer using an atomic operation.

6 Voxel Block Integration

We update all allocated voxel blocks that are currently within the
camera view frustum. After the previous step (see Section 5), all
voxel blocks in the truncation region of the visible surface are al-
located. However, a large fraction of the hash table will be empty
(i.e., not refer to any voxel blocks). Further, a significant amount
of voxel blocks will be outside the viewing frustum. Under these
assumptions, TSDF integration can be done very efficiently by only
selecting available blocks inside the current camera frustum.

Voxel Block Selection To select voxel blocks for integration, we
first in parallel access all hash table entries, and store a corresponding
binary flag in an array for an occupied and visible voxel block, or
zero otherwise. We then scan this array using a parallel prefix sum
technique [Harris et al. 2007]. To facilitate large scan sizes (our
hash table can have millions of entries) we use a three level up and
down sweep. Using the scan results we compact the hash table into
another buffer, which contains all hash entries that point to voxel
blocks within the view frustum (see Fig. 5). Note that voxel blocks
are not copied, just their associated hash entries.

Implicit Surface Update The generated list of hash entries is
then processed in parallel to update TSDF values. A single GPGPU
kernel is executed for each of the associated blocks, with one thread
allocated per voxel. That means that a voxel block will be processed
on a single GPU multiprocessor, thus maximizing cache hits and
minimizing code divergence. In practice, this is more efficient than
assigning a single thread to process an entire voxel block.

Updating voxel blocks involves re-computation of the associated
TSDFs, weights and colors. Distance values are integrated using a
running average as in Curless and Levoy [Curless and Levoy 1996].
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Figure 5: Voxel Block Selection: in a first step, all occupied and
visible hash entries are identified. By using a parallel prefix sum
scan and a simple copy kernel, these are copied to a much smaller,
contiguous array that can be efficiently traversed in parallel in
subsequent operations.

We set the integration weights according to the depth values in order
to incorporate the noise characteristics of the sensor; i.e., more
weight is given to nearer depth measurements for which we assume
less noise. Colors are also updated according to a running average,
but with much more weight given to recent color samples (to reduce
washing out colors).

One important part of the integration step is to update all voxel
blocks that fall into the current frustum, irrespective of whether they
reside in the current truncation region. This can be due to surfaces
being physically moved, or small outliers in the depth map being
allocated previously, which are no longer observed. These blocks are
not treated any differently, and continuously updated. As shown next
however, we evaluate all voxel blocks after integration to identify
such candidates for potential garbage collection.

Garbage Collection Garbage collection removes voxel blocks
allocated due to noisy outliers and moved surfaces. This step oper-
ates on the compacted hash table we obtained previously. For each
associated voxel block we perform a summarization step to obtain
both the minimum absolute TSDF value and the maximum weight.
If the maximum weight of a voxel block is zero or the minimum
TSDF is larger than a threshold we flag the block for deletion. In a
second pass, in parallel we delete all flagged entries using the hash
table delete operation described previously. When a hash entry gets
deleted successfully, we also free the corresponding voxel block by
appending the voxel block pointer to the heap (cf. Section 5).

7 Surface Extraction

We perform raycasting to extract the implicitly stored isosurface.
First, we compute the start and end points for each ray by conser-
vatively rasterizing the entire bounding box of all allocated voxel
blocks in the current view frustum. In parallel, we rasterize each
voxel block (retrieved from the compact hash table buffer computed
during integration) in two passes, and generate two z-buffers for
the minimum and maximum depth. This demonstrates another ben-
efit for our linear hash table data structure (over hierarchical data
structures), allowing fast parallel access to all allocated blocks for
operations such as rasterization.

For each output pixel, we march a ray from the associated minimum
to the maximum depth values. During marching we must evaluate
the TSDF at neighboring world positions along the current ray. In
this step, unallocated voxel blocks are also considered as empty
space. Within occupied voxel blocks, we apply tri-linear interpola-
tion by looking up the eight neighboring voxels. One special case

that needs to be considered is sampling across voxel block bound-
aries. To deal with this, we retrieve neighboring voxels by lookup
via the hash table rather than sampling the voxel block directly. In
practice, we use hash table lookups irrespective of whether the voxel
is on a block boundary. Due to caching, reduced register count per
thread, and non-divergent code, this increases performance over
direct block sampling. We have also tried using a one-voxel overlap
region around blocks in order to simplify tri-linear reads without
the need of accessing multiple voxel blocks. However, that approx-
imately doubled the memory footprint and we found that required
overlap synchronization for surface integration bears significant
computational overhead.

To locate the surface interface (zero-crossing) we determine sign
changes for current and previous (tri-linearly-interpolated) TSDF
values. We ignore zero-crossings from negative to positive as this
refers to back-facing surface geometry. In order to speed up ray
marching, we skip a predefined interval (half the minimum trunca-
tion value). This avoids missing isosurfaces but provides only coarse
zero-crossing positions. To refine further, we use iterative line search
once a zero-crossing is detected to estimate the true surface location.

Camera Tracking Once the surface is extracted via raycasting, it
can be shaded for rendering, or used for frame-to-model camera pose
estimation [Newcombe et al. 2011]. We use the next input frame
along with the raycasted depth map to estimate pose. This ensures
that the new pose is estimated prior to depth map fusion. Pose is
estimated using the point-plane variant of ICP [Chen and Medioni
1992] with projective data association. The point-plane energy func-
tion is linearized [Low 2004] on the GPU to a 6 × 6 matrix using
a parallel reduction and solved via Singular Value Decomposition
on the CPU. As our data structure also stores associated color data,
we incorporate a weighting factor in the point-plane error-metric
based on color consistency between extracted and input RGB values
[Johnson and Bing Kang 1999].

chunks to be
streamed in

voxel blocks to be
streamed out

Figure 6: Streaming: camera moves from left to right. Voxel blocks
leaving the camera frustum are streamed out (green). Streaming in
happens on a chunk basis (red blocks).

8 Streaming

The basic data structure described so far allows for high-resolution
voxel blocks to be modeled beyond the resolution and range of
current commodity depth cameras (see Section 9). However, GPU
memory and performance become a consideration when we attempt
to maintain surface data far outside of the view frustum in the hash
table. To deal with this issue and allow unbounded reconstructions,
we utilize a bidirectional GPU-Host streaming scheme.



Our unstructured data structure is well-suited for this purpose, since
streaming voxel blocks in or out does not require any reorganization
of the hash table. We create an active region defined as a sphere
containing the current camera view frustum and a safety region
around it. For a standard Kinect, we assume a depth range up to
eight meters. We locate the center of the sphere four meters from
the camera position and use a radius of eight meters (see Figure 6).
Bidirectional streaming of voxel blocks happens every frame at the
beginning of the pipeline directly after pose estimation.

8.1 GPU-to-Host Streaming

To stream voxel blocks out of the active region, we first access the
hash table in parallel and mark voxel blocks which moved out of the
active region. For all these candidates we delete corresponding hash
entries, and append them efficiently to an intermediate buffer. In a
second pass, for all these hash entries, corresponding voxel blocks
are copied to another intermediate buffer. The original voxel blocks
are then cleared and corresponding locations are appended back to
the heap, so they can be reused. Finally, these intermediate buffers
are copied back to the host for access.

On the host, voxel data is no longer organized into a hash table. In-
stead, we logically subdivide the world space uniformly into chunks
(in our current implementation each set to 1m3). Voxel blocks are
appended to these chunks using a linked list. For each voxel block
we store the voxel block descriptor which corresponds to hash entry
data, as well as the voxel data.

8.2 Host-to-GPU Streaming

For Host-to-GPU streaming we first identify chunks that completely
fall into the spherical active region again, due to the user moving
back to a previously reconstructed region. In contrast to GPU-
to-CPU streaming which works on a per voxel block level, CPU-
to-GPU streaming operates on a per chunk basis. So if a chunk
is identified for streaming all voxel blocks in that chunk will be
streamed to the GPU. This enhances performance, given the high
host-GPU bandwidth and ability to efficiently cull voxel blocks
outside of the view frustum.

Due to limited CPU compute per frame, streaming from host-to-
GPU is staggered, one chunk per frame. We select the chunk tagged
for streaming that is most near to the camera frustum center. We
then copy the chunk to the GPU via the intermediate buffers created
for GPU-to-Host streaming. After copying to the GPU, in parallel
we insert voxel block descriptors as entries into the hash table,
allocating voxel block memory from the heap, and copy voxel data
accordingly. This is similar to the allocation phase (see Section 5),
however, when streaming data, all hash entries must be inserted
within a single frame, rather than staggering the insertions.

For a streamed voxel block we check the descriptor and atomically
compare whether the position is occupied in the table. If an entry
exists, we proceed to search for the next available free position in the
bucket (as described below, we ensure that there are no duplicates).
Otherwise we write the streamed hash entry at that position into the
hash table. If the bucket is full, the entry is appended at the end of
the list. Both writing a free entry directly in the bucket or appending
it to the end of a linked list must be performed atomically.

8.3 Stream and Allocation Synchronization

One important consideration for streaming is to ensure that voxel
blocks are never duplicated on host or GPU, leading to potential
memory leaks. Given that Host-to-GPU streaming is staggered, there
are rare cases where voxel blocks waiting to be streamed may enter

the view frustum. We must verify that there is no new allocation of
these voxel blocks in these staggered regions. To this end we store a
binary occupancy grid on the GPU, where each entry corresponds to
a particular chunk. Setting the bit indicates that the chunk resides
on the GPU and allocations can occur in this region. Otherwise the
chunk should be assumed to be on the host and allocations should
be avoided. This binary grid carries little GPU memory overhead
512KB for 2563m3, and can be easily re-allocated on-the-fly to
extend to larger scenes.

9 Results

We have implemented our data structure using DirectX 11 Compute
Shaders. We use an Asus Xtion for scenes in Fig. 10 and a Kinect
for Windows camera for all other scenes, both providing RGB-D
data at 30Hz. Results of live scene captures for our test scenes are
shown in Figures 1 and 11 as well as supplementary material. We
captured a variety of indoor and outdoor scenes under a variety of
lighting conditions. While the quality of active infrared sensors is
affected significantly in outdoor scenes, our system still manages to
reconstruct large-scale outdoor scenes with fine quality. STATUES in
Fig. 1 shows the result after an online scan of a ∼ 20m long corridor
in a museum with about 4m high statues, which was captured and
reconstructed live in under 5 minutes. PASSAGEWAY (Fig. 11 top)
shows a pathway of shops ∼ 30m long reconstructed live. QUEENS
(Fig. 11 middle) shows a large courtyard (stretching ∼ 16m ×
12m × 2m) reconstructed in approximately 4 minutes. Finally,
BOOKSHOP (Fig. 11 bottom) shows three levels of a bookstore
reconstructed in under 6 minutes.

These reconstructions demonstrate both scale and quality, and were
all reconstructed well above the 30Hz frame rate of the Kinect
as shown in Figure 7. This allows for potential increase of voxel
resolution and additional ICP steps for more robust camera tracking.
We use a voxel size of 4mm for Fig. 8, 10 and 10mm for Fig.
1, 9, 11. We also tested our system with < 2mm voxels without
visible improvements in overall reconstruction quality. While this
highlights limits of current depth sensing technology, we believe that
this opens up new possibilities for future depth acquisition hardware.
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Figure 7: Performance Comparison: frame rate measurements
across our test scenes compared against two state-of-the-art recon-
struction methods. Extended (or moving volume) regular grids and
the hierarchical approach of [Chen et al. 2013].

9.1 Performance

We measured performance of our entire pipeline including run-time
overhead (such as display rendering) on an Intel Core i7 3.4GHz
CPU, 16GB of RAM, and a single NVIDIA GeForce GTX Titan.
Average timings among all test scenes is 21.8ms (∼46fps) with
8.0ms (37% of the overall pipeline) for ICP pose estimation (15



iterations), 4.6ms (21%) for surface integration, 4.8ms (22%) for
surface extraction and shading (including colored phong shading),
and 4.4ms (20%) for streaming and input data processing. Separate
timings for each test scene are provided in Fig. 7.

Figure 8: Quality and scale comparison with related systems. Bot-
tom right: Our method maintains a large working volume with
streaming at frame-rate (in this example 4mm voxels). Top: moving
volumes based on regular grids. With the same physical extent, the
voxel resolution is coarse and quality is reduced (top left), but to
maintain the same voxel resolution, the size of the volume must be
decreased significantly (top right). Bottom left: the performance
bottleneck of hierarchical grids leads to more tracking drift, and
reduces overall quality.

Our data structure uses a total of 34MB for the hash table and all
auxiliary buffers. This allows a hash table with 221 entries, each
containing 12 bytes. Our experiments show that a bucket size of two
provides best performance leaving us with about 1 million buckets.
We pre-allocate 1GB of heap memory to provide space for voxel
data on the GPU. With 83 voxels per block (8 byte per voxel) this
corresponds to 218 voxel blocks. Note that 221 hash entries only
index to 218 voxel blocks resulting in a low hash occupancy, thus
minimizing hash collisions.

On average we found that about 140K voxel blocks are allocated
when capturing our test scenes at a voxel size of 8mm (varying with
scene complexity). This corresponds to an equal amount of occupied
hash entries, resulting in a hash table occupancy with 120K buckets
with a single entry, and 10K buckets with two entries. With a bucket
size of two and hash table size of 221, all test scenes run with only
0.1% bucket overflow. These are handled by linked lists and across
all scenes the largest list length is three. In total ∼700 linked list
entries are allocated across all scenes, which is negligible compared
to the hash table size.

On average less than 300MB memory is allocated for surface data
(less than 600MB with color). This compares favorably to a regular
grid that would require well over 5GB (including color) at the same
voxel resolution (8mm) and spatial extent (8m in depth). This also
leaves enough space to encode RGB data directly into the stored
voxels (see Fig. 11).

In practice this simple hashing scheme with small bucket size and
large hash table size works well. In our scenario we can tolerate
larger and sparser (221) hash table sizes, because the memory foot-
print of the hash table is insignificant (∼34MB) compared to the
voxel block buffer (which is pre-allocated to 1GB). Smaller hash

table sizes cause higher occupancy and decrease performance. For
example, in the STATUES scene our standard settings (221 elements)
occupies ∼6.4% of the hash table and runs at ∼21ms, with 200K
elements occupancy rises to ∼65% and performance is reduced to
∼24.8ms, and with 160K elements occupancy rises to ∼81% with
performance further falling to 25.6ms. In our live system, we chose
larger table sizes as we favored performance over the small memory
gains. Our pipeline currently uses atomic operations per hash bucket
for allocation and streaming. As shown by our timings across all
scenes, these sequential operations cause negligible performance
overheads, due to hash collisions being minimal.

More sophisticated hashing approaches [Lefebvre and Hoppe 2006;
Bastos and Celes 2008; Alcantara et al. 2009; Pan and Manocha
2011; Garcı́a et al. 2011] could further reduce collisions and allow
smaller hash tables. However, how these methods deal with the
high throughput of data, fusion and streaming is unclear. It is also
important to stress that our simple hashing method works well in
practice, handling scalability and quality at framerates >40fps across
all scenes.

Figure 9: Comparison of camera tracking drift: in gray the results
of the hierarchical approach of Chen et al. [2013] and in yellow
our results. Note the twisting in the final models for Chen’s ap-
proach; e.g., the center of the QUEENS and left hand side of the
PASSAGEWAY reconstruction.

9.2 Comparison

In Fig. 9 we show the quality and performance of our method com-
pared to previous work. All code was tested on the same hardware
(see above) with a fixed number of ICP iterations (15). As our al-
gorithm supports real-time streaming, we conducted comparisons
with similar moving volume approaches. First, we compare against
Extended Fusion [Roth and Vona 2012; Whelan et al. 2012] that use
a regular uniform grid including streaming to scale-up volumetric
fusion. Second, we compare against Hierarchical Fusion [Chen et al.
2013] that supports larger moving volumes than other approaches.
Corresponding timings are shown in Fig. 7. The most significant
limitation of the hierarchy is the data structure overhead causing a
performance drop, particularly in complex scenes. In our test scenes
the entire hierarchy pipeline (including pose estimation, fusion, and
streaming) runs at ∼ 15Hz, which is lower than the input frame rate.



Figure 10: Comparison of output meshes from our online method
(top) with the offline method of [Zhou and Koltun 2013] (bottom).

Note that these measurements are based on the reference implemen-
tation by Chen et al. [2013]. Our system also performs favorably
compared to streaming regular grids in terms of frame-rate (labeled
Extended in Fig. 7). We attribute this to processing of empty voxels
in the regular grid (particularly during random GPU memory access;
e.g., raycasting) and streaming overhead.

Further, as shown in Fig. 8, our reconstruction quality is higher than
these approaches. The quality of Extended Fusion is limited by the
small spatial extent of the moving volume, which means much of the
Kinect data is out of range and not integrated. Hierarchical Fusion
suffers from the poor frame rate causing input data to be skipped.
This severely affects pose estimation quality resulting in inaccurate
surface integration and drift. In large-scale scenes this type of drift
might cause unnaturally twisted models as shown in Fig. 9.

Given our more efficient data structure, which runs faster than the
Kinect camera frame rate, additional time can be spent improving
the accuracy of the pose estimation by increasing the number of
ICP iterations. We find our results encouraging, particularly given
no drift correction is explicitly handled. In Fig. 10 scenes captured
and processed offline using the method of [Zhou and Koltun 2013],
which uses a multi-pass global optimization to mitigate drift, are
compared to our online method. While our method does suffer
from small drifts, our system produces comparable results, and can
be used for real-time applications. Our online method can also
be used as a live preview, and combined with such approaches for
higher-quality offline reconstruction.

10 Conclusion

We have presented a new data structure designed specifically for
online reconstruction using widely-available consumer depth cam-
eras. Our approach leverages the power of implicit surfaces and
volumetric fusion for reconstruction, but does so using a compact
spatial hashing scheme, which removes both the overhead of reg-
ular grids and hierarchical data structures. Our hashing scheme
supports real-time performance without forgoing scale or finer qual-
ity reconstruction. All operations are designed to be efficient for
parallel graphics hardware. The inherent unstructured nature of our
method removes the overhead of hierarchical spatial data structures,
but captures the key qualities of volumetric fusion. To further ex-
tend the bounds of reconstruction, our method supports lightweight
streaming without major data structure reorganization.

We have demonstrated performance increases over the state-of-the-
art, even regular grid implementations. The data structure is memory

efficient and can allow color data to be directly incorporated in the
reconstruction, which can also be used to improve the robustness of
registration. Due to the high performance of our data structure, the
available time budget can be utilized for further improving camera
pose estimation, which directly improves reconstruction quality over
existing online approaches.

We believe the advantages of our method will be even more evident
when future depth cameras with higher resolution sensing emerge,
as our data structure is already capable of reconstructing surfaces
beyond the resolution of existing depth sensors such as Kinect.
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Figure 11: Reconstructions of the captured test scenes: a pathway of shops (PASSAGEWAY), a large courtyard (QUEENS) and a three level
bookstore (BOOKSHOP). Shown left: the input data from the Kinect sensor (depth and color) and the live raycasted view of our system (shaded
and shaded color).


