
Supplemental Materials for Activity-centric Scene Synthesis for Functional 3D
Scene Modeling

Matthew Fisher Manolis Savva Yangyan Li Pat Hanrahan Matthias Nießner

Stanford University

1 Introduction

This document provides additional details about the implementa-
tion of the scene synthesis algorithm of Fisher et al. [2015], the as-
sociated activity detection and plane extraction methods, as well as
the types of data provided in our scene, model, and scan databases.
Section 2 lists and discusses the parameters used in our synthesis
pipeline. The methodology and parameters used in activity detec-
tion and plane extraction are discussed in Sections 3 and 4. The
details of our database are given in Section 5.

2 Synthesis Parameters

2.1 Scene Template Parameters

• ColumnSize (Section 4.1 of the paper) — This parameter sets
the X and Y spatial extent of each vertical column in the
coarse geometric representation. All results use a value of
5 cm, as this is the approximate accuracy of our 3D scans.
A smaller value is appropriate with scans that contain fine-
scale detail obtained from a more accurate sensor. Larger val-
ues can cause synthesized scenes to have poor alignment with
objects such as monitors or chairs as the desired details are
smoothed over by the coarse discretization.

• σs, σr (Section 6 of the paper) — These parameters control
how strongly the geometry of the synthesized scene is pe-
nalized for deviating from either the supporting plane or the
residual geometry height observed in the scan. “Supporting
plane height” refers to the height of the top-most supporting
plane (if any), while “residual height” refers to the height of
geometry on top of the supporting plane. We use a value of
15 cm for both parameters, thus controlling how closely re-
trieved objects must match the scanned geometry. Small val-
ues for these parameters are likely to reduce the model di-
versity of synthesized scenes because otherwise valid mod-
els will be rejected if their dimensions do not match the scan
closely enough. Conversely, large values for these parameters
are likely to increase model diversity but also deviate more
strongly from the geometry of objects in the input scan.

2.2 Agent Parameters

• AgentSittingHeight — This parameter specifies the distance
along the z-axis between the agent’s eyes and its hip-support

plane assuming the agent is sitting. We use a value of 0.9m,
corresponding to an average adult.

• AgentStandingHeight — This parameter specifies the dis-
tance along the z-axis between the agent’s eyes and the floor
plane when the agent is standing. We use a value of 1.55m,
corresponding to an average adult.

• AgentShoulderDisplacement — This parameter specifies the
distance between the agent’s shoulders and the agent’s head.
We use an offset of 0.25m below the eyes along the z-axis
and an offset by 0.25m to the left or right of the agent.

2.3 Sampling Parameters

The parameters detailed in this section are introduced in the pseu-
docode of Section 8.2.

• km — The number of models sampled from the backing
model database at each iteration of the generation algorithm.
Using a value of km that exceeds the numbers of models
of that category from the database will cause the algorithm
to consider placing all models in the scene. This will typi-
cally result in only the single, best scoring model being in-
serted which can reduce the model diversity in the synthesized
scenes. Conversely, choosing a small value of km may overly
restrict the number of models considered causing the chosen
model to be a poor geometric or interaction fit to the scene.
All results in the paper use km = 5.

• kl — The number of locations and rotations sampled as can-
didate placement locations for each object. We choose kl to
sample one point with a random rotation every 1 cm2, to a
maximum of 10000 points per candidate model. Generally, kl
should be chosen as large as possible although larger values
will linearly increase the time it takes to generate a scene.

3 Activity Detection

In order to detect activities in the given input scenes, we apply an
approach based on prior work called SceneGrok [Savva et al. 2014].
We use the annotated scene and recording dataset released by the
authors to train a set of SceneGrok action map classifiers1. All
parameters are set as reported in the paper; most importantly, 100
dictionary centroids are used for the segment dictionary activation
function.

After the trained classifiers are obtained, we create an action map
for each given input scene and action label a. We sample 5000
random x-y positions within the bounding box of the input scene
and for each we evaluate the likelihood of the action by position-
ing a human pose (labeled with the action a in the training set) at
36 orientations in 10 degree increments, parameterized by an angle
θ. Following the original approach, the poses are sampled at ran-
dom from the set of poses with the given label. Finally, we store
within each sample point a tuple (x, y, θ, pa) where the first three

1http://graphics.stanford.edu/projects/
scenegrok/

http://graphics.stanford.edu/projects/scenegrok/
http://graphics.stanford.edu/projects/scenegrok/


elements describe the position and orientation of the sampled pose,
and the final element is the evaluated likelihood pa of the action a
occurring given the pose at that position and orientation. As this is
a classification score between 0 and 1, with 0.5 indicating classifier
uncertainty, we threshold all values less than 0.5 to 0, preventing
proxy agents from being sampled in these regions.

4 Plane Extraction

The method for dominant plane extraction from 3D point clouds is
adopted from Mattausch et al. [2014]; the authors’ implementation
is available on their website2. This is a clustering method based
on region growing, with careful design for speedup and robustness.
Two important keys in region growing clustering are where to start
and when to stop. The method starts with picking growing seeds by
an uniform grid sampling, with a grid size of 5 cm. Since we obtain
point clouds from truncated signed distance functions, the normal
of each point is reliable, and we can compute robust principal curva-
tures from the point coordinates and normal (we use a search radius
of 5 cm). Growing seeds with large curvatures are pruned from be-
ing seeds, as points in curvy areas are unlikely to be good starting
points for extracting large planes. Each seed has its position and
normal, from which the plane parameter can be determined. Then,
we progressively traverse the points and add them into the plane if
(a) the angle between the plane normal and point normal is less than
20 degrees, and (b) the distance between the point and the plane
is less than 5 cm. Once the number of points belong to a growing
plane doubles, the plane parameters are re-estimated by least square
fitting to the included points. This re-estimation strategy stabilizes
the growing process, and outputs better results. Finally, we compute
the area of the collected planes, and discard planes with areas less
than 0.04 m2. Note that our pipeline only cares about dominant
planes, thus we can set rather loose parameters to safely discard
suspicious planes.

5 Database Details

Here, we summarize the different types of data used by our system
and how they are acquired. Note that all of this information can
be found on our project page3; code for accessing and reading the
database files can be also found online4

5.1 Real-world Data

In order to obtain a coarse 3D reconstruction, we use Kinect v1.0
sensor to scan a target, static environment. The resulting depth and
color frames are fused together into a single coordinate system us-
ing Voxel Hashing [Nießner et al. 2013], and marching cubes is
used to extract a polygonal mesh from the signed distance func-
tion5. The resulting mesh is transformed so that the floor is at
z = 0, oriented upwards along the positive z-axis. We provide
this oriented mesh for each scan as a Wavefront OBJ file.

Next, activity detection is performed as described in Section 3 of
the supplemental materials. We provide the resulting activity maps
for each activity in the coordinate frame of the OBJ file. We also
provide a sampling of the localized, oriented, and labeled agents in
each scene.

2http://www.ifi.uzh.ch/vmml/publications/
ObjDetandClas.html

3http://graphics.stanford.edu/projects/actsynth/
4https://github.com/techmatt/actsynth/
5https://github.com/nachtmar/VoxelHashing/

5.2 Virtual Data

For the virtual scene models, we employ the Stanford 3D scene
database which is publicly available6. We augment the scene
database with additional scenes in order to reflect the new activi-
ties in our database. Note that we provide the augmented database
of 3D scenes on our project page. Each scene is a collection of
3D objects, where each object has a reference to a model in the 3D
model database, a coordinate frame of this model in the space of
the 3D scene, and a parent static-support object. Each model may
use a different uniform scale of the input 3D model. We provide
the entire 3D model database that the scenes are drawn from as
Wavefront OBJ files along with associated 2D textures as JPG files
(these textures are only used for rendering and are not needed by
the synthesis method).

We annotate each scene with discrete, oriented virtual agents each
labeled with a specific activity. Each object in each virtual scene
is bound to zero or more agents indicating that object is used as
part of that agent’s behavior. We provide the agent annotations and
agent-object bindings for each virtual scene. Finally, we provide
the annotations for each model used in the 3D scene database with
discretely-sampled interaction maps. The format of these scene and
interaction map annotations is specified on the project website.

References

FISHER, M., SAVVA, M., YANGYAN, L., HANRAHAN, P., AND
NIESSNER, M. 2015. Activity-centric scene synthesis for
functional 3d scene modeling. ACM Transactions on Graphics
(TOG).

MATTAUSCH, O., PANOZZO, D., MURA, C., SORKINE-
HORNUNG, O., AND PAJAROLA, R. 2014. Object detection
and classification from large-scale cluttered indoor scans. Com-
puter Graphics Forum 33, 2, 11–21.

NIESSNER, M., ZOLLHÖFER, M., IZADI, S., AND STAMMINGER,
M. 2013. Real-time 3d reconstruction at scale using voxel hash-
ing. ACM Transactions on Graphics (TOG) 32, 6, 169.

SAVVA, M., CHANG, A. X., HANRAHAN, P., FISHER, M., AND
NIESSNER, M. 2014. Scenegrok: Inferring action maps in 3D
environments. ACM Transactions on Graphics (TOG) 33, 6.

6http://graphics.stanford.edu/projects/
scenesynth/

http://www.ifi.uzh.ch/vmml/publications/ObjDetandClas.html
http://www.ifi.uzh.ch/vmml/publications/ObjDetandClas.html
http://graphics.stanford.edu/projects/actsynth/
https://github.com/techmatt/actsynth/
https://github.com/nachtmar/VoxelHashing/
http://graphics.stanford.edu/projects/scenesynth/
http://graphics.stanford.edu/projects/scenesynth/

