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1. Details on Model Training
Training for Our Volumetric CNNs To produce occu-
pancy grids from meshes, the faces of a mesh are subdi-
vided until the length of the longest edge is within a single
voxel; then all voxels that intersect with a face are marked
as occupied. For 3D resolution 10,30 and 60 we generate
voxelizations with central regions 10, 24, 54 and padding 0,
3, 3 respectively.

This voxelization is followed by a hole filling step that
fills the holes inside the models as occupied voxels.

To augment our training data with azimuth and elevation
rotations, we generate 60 voxelizations for each model, with
azimuth uniformly sampled from [0, 360] and elevation uni-
formly sampled from [−45, 45] (both in degrees).

We use a Nesterov solver with learning rate 0.005 and
weight decay 0.0005 for training. It takes around 6 hours
to train on a K40 using Caffe [2] for the subvolume su-
pervision CNN and 20 hours for the anisotropic probing
CNN. For multi-orientation versions of them, Subvolume-
Sup splits at the last conv layer and AniProbing splits at the
second last conv layer. Volumetric CNNs trained on sin-
gle orientation inputs are then used to initialize their multi-
orientation version for fine tuning.

During testing time, 20 orientations of a CAD model
occupancy grid (equally distributed azimuth and uniformly
sampled elevation from [−45, 45]) are input to MO-VCNN
to make a class prediction.

Training for Our MVCNN and Multi-resolution
MVCNN We use Blender to render 20 views of each
(either ordinary or spherical) CAD model from azimuth
angles in 0, 36, 72, ..., 324 degrees and elevation angles
in −30 and 30 degrees. For sphere rendering, we convert
voxelized CAD models into meshes by replacing each
voxel with an approximate sphere with 50 faces and
diameter length of the voxel size. Four fixed point light
sources are used for the ray-tracing rendering.

We first finetune AlexNet [3] with rendered images for
ordinary rendering and multi-resolutional sphere renderings
separately. Then we use trained AlexNet to initialize the
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Figure 1: Learning curve of 3DShapeNets (end-to-end), and
our Subvolume Supervision and Anisotropic Probing net-
works.

MVCNN and fine tune on multi-view inputs.

Overfitting in Volumetric CNN Training In Sec 4.2 of
main paper we mentioned that training the volumetric CNN
proposed by 3DShapeNets [5] in an end-to-end fashion is
prone to overfitting. For plotting this curve, we train on
ModelNet40 train set and report average class acuracy as
test accuracy. In Fig 1, we see strong overfitting using
3DShapeNets architecture. Also we notice that, although
overfitting still exists during training of our volumetric net-
works, the problem is greatly mitigated. In the end, our net-
works achieve both smaller train-test curve gap and higher
test accuracies. Note that these numbers are from classi-
fication results with single orientation of shapes; methods
like anisotropic probing can greatly improve the accuracy
by adding orientation pooling.

Other Volumetric Data Representations Note that
while we present our Volumetric CNN methods using oc-
cupancy grid representations of 3D objects, our approaches
easily generalize to other volumetric data representations.
In particular, we have also used Signed Distance Functions
and (unsigned) Distance Functions as input (also 30× 30×
30 grids). Signed distance fields were generated through
virtual scanning of synthetic training data, using volumetric
fusion [1] (for our real-world reconstructed models, this is



the natural representation); distance fields were generated
directly from the surfaces of the models. Performance was
not affected significantly by the different representations,
differing by around 0.5% to 1.0% for classification accu-
racy on ModelNet test data.

2. Real-world Reconstruction Test Data
In order to evaluate our method on real scanning data,

we obtain a dataset of 3D models, which we reconstruct
using data from a commodity RGB-D sensor (ASUS Xtion
Pro). To this end, we pick a variety of real-world objects for
which we record a short RGB-D frame sequence (several
hundred frames) for each instance. For each object, we use
the publicly-available Voxel Hashing framework in order to
obtain a dense 3D reconstruction. In a semi-automatic post-
processing step, we segment out the object of interest’s ge-
ometry by removing the scene background. In addition, we
align the obtained model with the world up direction. Over-
all, we obtained scans of 243 objects, comprising of a total
of over XYZ thousand RGB-D input frames.

3. More Retrieval Results
For model retrieval, we extract CNN features (either

from 3D CNNs or MVCNNs) from query models and find
nearest neighbor results based on L2 distance. Similar to
MVCNN (Su et al.) [4], we use a low-rank Mahalanobis
metric to optimize retrieval performance. Figure 2 and Fig-
ure 3 show more examples of retrieval from real model
queries.
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Figure 2: More retrieval results. Left column: queries, real reconstructed meshes. Right five columns: retrieved models from
ModelNet40 Test800.



Figure 3: More retrieval results (samples with mistakes). Left column: queries, real reconstructed meshes. Right five
columns: retrieved models from ModelNet40 Test800. Red bounding boxes denote results from wrong categories.
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Figure 4: Our real-world reconstruction test dataset, comprising 12 categories and 243 models. Each row lists a category
along with the number of objects and several example reconstructed models in that category.


