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In this document, we provide supplementary information
to the method by Thies et al. [4]. More specifically, we
include additional detail about our optimization framework
(see Section 1 and 2), and we show further comparisons
against other methods (see Section 3). We also evaluate
the reconstruction error in a self-reenactment scenario. In
Section 4, a list of used mathematical symbols is given. The
used video sources are listed in Table 1.

1. Optimization Framework

Our Gauss-Newton optimization framework is based on
the work of Thies et al. [3]. Our aim is to include every
visible pixel p ∈ V in CS in the optimization process. To
this end, we gather all visible pixels in the synthesized im-
age using a parallel prefix scan. The computation of the
Jacobian J of the residual vector F and the gradient JTF
of the energy function are then parallelized across all GPU
processors. This parallelization is feasible since all partial
derivatives and gradient entries with respect to a variable
can be computed independently. During evaluation of the
gradient, all components of the Jacobian are computed and
stored in global memory. In order to evaluate the gradient,
we use a two-stage reduction to sum-up all local per pixel
gradients. Finally, we add the regularizer and the sparse
feature term to the Jacobian and the gradient.

Using the computed Jacobian J and the gradient JTF ,
we solve the corresponding normal equation JTJ∆x =
−JTF for the parameter update ∆x using a preconditioned
conjugate gradient (PCG) method. We apply a Jacobi pre-
conditioner that is precomputed during the evaluation of the
gradient. To avoid the high computational cost of JTJ , our
GPU-based PCG method splits up the computation of JTJp
into two successive matrix-vector products.

In order to increase convergence speed and to avoid lo-
cal minima, we use a coarse-to-fine hierarchical optimiza-
tion strategy. During online tracking, we only consider the
second and third level, where we run one and seven Gauss-
Newton steps on the respective level. Within a Gauss-
Newton step, we always run four PCG iterations.

Our complete framework is implemented using DirectX

for rendering and DirectCompute for optimization. The
joint graphics and compute capability of DirectX11 enables
the processing of rendered images by the graphics pipeline
without resource mapping overhead. In the case of an
analysis-by-synthesis approach like ours, this is essential
to runtime performance, since many rendering-to-compute
switches are required.

2. Non-rigid Bundling

For our non-rigid model-based bundling problem, the
non-zero structure of the corresponding Jacobian is block
dense. We visualize its non-zero structure, which we ex-
ploit during optimization, in Fig. 1. In order to leverage

Figure 1: Non-zero structure of the Jacobian matrix of our
non-rigid model-based bundling approach for three key-
frames. Where Ii, Ei, Li, Ri are the i-th per frame Jacobian
matrices of the identity, expression, illumination, and rigid
pose parameters.

the sparse structure of the Jacobian, we adopt the Gauss-
Newton framework as follows: we modify the computa-
tion of the gradient JT (P) · F (P) and the matrix vec-
tor product JT (P) · J(P) · x that is used in the PCG
method. To this end, we define a promoter function Ψf :
R|Pglobal|+|Plocal| → R|Pglobal|+k·|Plocal| that lifts a per
frame parameter vector to the parameter vector space of
all frames (Ψ−1f is the inverse of this promoter function).
Pglobal are the global parameters that are shared over all
frames, such as the identity parameters of the face model
and the camera parameters. Plocal are the local parameters
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that are only valid for one specific frame (i.e., facial expres-
sion, rigid pose and illumination parameters). Using the
promoter function Ψf the gradient is given as

JT (P) · F (P) =
k∑

f=1

Ψf (JT
f (Ψ−1f (P)) · Ff (Ψ−1f (P))),

where Jf is the per-frame Jacobian matrix and Ff the cor-
responding residual vector.

As for the parameter space, we introduce another pro-
moter function Ψ̂f that lifts a local residual vector to the
global residual vector. In contrast to the parameter pro-
moter function, this function varies in every Gauss-Newton
iteration since the number of residuals might change. As
proposed in [5, 3], we split up the computation of JT (P) ·
J(P) ·x into two successive matrix vector products, where
the second multiplication is analogue to the computation of
the gradient. The first multiplication is as follows:

J(P) · x =
k∑

f=1

Ψ̂f

(
Jf (Ψ−1f (P)) ·Ψ−1f (x)

)
Using this scheme, we are able to efficiently solve the nor-
mal equations.

The Gauss-Newton framework is embedded in a hierar-
chical solution strategy (see Fig. 2). This hierarchy allows
to prevent convergence to local minima. We start optimiz-
ing on a coarse level and propagate the solution to the next
finer level using the parametric face model. In our experi-
ments we used three levels with 25, 5, and 1 Gauss-Newton
iterations for the coarsest, the medium and the finest level
respectively, each with 4 PCG steps. Our implementation
is not restricted to the number k of used keyframes. The
processing time is linear in the number of keyframes. In
our experiments we used k = 6 keyframes to estimate the
identity parameters resulting in a processing time of a few
seconds (∼ 20s).

3. Reenactment Evaluation
In addition to the results in the main paper [4], we com-

pare our method to other existing reenactment pipelines.
Fig. 3 shows a self-reenactment scenario (i.e., the source
and the target actor is the same person) in comparison to
Garrido et al. [2]. Our online approach is able to achieve
similar or better quality as the offline approach of Garrido
et al. [2]. In Fig. 4, we show a comparisons to Dale et al.
[1] and Garrido et al. [2]. Note that both methods do not
preserve the identity of the target actor outside of the self-
reenactment scenario. In contrast, our method preserves the
identity and alters the expression with respect to the source
actor, which enables more plausible results.

We evaluate the presented reenactment method by mea-
suring the photometric error between the input sequence

Figure 2: Non-rigid model-based bundling hierarchy: the
top row shows the hierarchy of the input video and the sec-
ond row the overlaid face model.

Figure 3: Self-Reenactment comparison to Garrido et al.
[2]. The expression of the actress is transferred to a
recorded video of herself.

Figure 4: Comparison to Dale et al. [1] and Garrido et al.
[2]. The expression of the left input actor is transferred to
the right input actor without changing the person’s identity.

and the self-reenactment of an actor using cross-validation
(see Fig. 5). The first 1093 frames of the video are used
to retrieve mouth interiors (training data). Thus, self-
reenactment of the first half results in a small mean pho-
tometric error of 0.33 pixels (0.157px std.Dev.) measured
via optical flow. In the second half (frames 1093-2186) of
the video, the photometric error increases to a mean value
of 0.42 pixels (0.17px std.Dev.).



Obama - Celebrating Independence Day
https://www.youtube.com/watch?v=d-VaUaTF3 k
Donald Trump - Interview: ’I Love China’ - Morning Joe - MSNBC
https://www.youtube.com/watch?v=Tsh V3U7EfU
Daniel Craig - Interview on the new James Bond Movie
https://www.youtube.com/watch?v=8ZbCf7szjXg
Putin - New Year’s Address to the Nation
https://www.youtube.com/watch?v=8 JxKKY7I Y
Arnold Schwarzenegger - Terminator: Genisys
https://www.youtube.com/watch?v=p6CJx ZbaG4
Vocal Coach Ken Taylor - How to Sing Well
https://www.youtube.com/watch?v=KDYaACGUt3k

Table 1: Youtube Video References.

Figure 5: Self-Reenactment / Cross-Validation; from
left to right: input frame (ground truth), resulting self-
reenactment, and the photometric error.

4. List of Mathematical Symbols

Symbol Description
K feature descriptor
L Local Binary Pattern
t timestep

D
(
KT ,KS , t

)
distance measure

Dp

(
KT ,KS

t

)
distance measure in parameter space

Dm

(
KT ,KS

t

)
distance measure of facial landmarks

Da

(
KT ,KS

t , t
)

distance measure of appearance
Dl

(
KT ,KS

t

)
Chi Squared Distance of LBPs

Dc(τ, t) cross-correlation between frame τ and t
τk k-th previous retrieved frame index

wc

(
KT ,KS

t

)
frame weight

Φ(P) parameter promoter function
Φ̂(F (P)) residual promoter function
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Symbol Description
α,β, δ shape, albedo, expression parameters

Mgeo,Malb parametric face model
aid,aalb average shape, albedo

Eid, Ealb, Eexp shape, albedo, expression basis
σid,σalb,σexp std. dev. shape, albedo, expression

F triangle set of the model
n number of vertices
vj vertex of the face model
γ illumination parameters

Φ(v) model-to-world transformation
R rotation
t translation

Π(v) full perspective projection
κ camera parameters defining Π(v)
P vector of all parameters
CI input color
CS synth. color
V set of valid pixels
p integer pixel location
F set of detected features
f j j-th feature point

wconf,j confidence of j-th feature point
E(P) energy function
Ecol(P) photo-consistency term
Elan(P) feature alignment term
Ereg(P) statistical regularization

wcol, wlan, wreg energy term weights
r(P) a general residual vector
J(P) jacobian matrix
F (P) residual vector
Ai deformation gradient of triangle i
v̂i deformed vertex
V triangle spanning vectors
V̂ deformed triangle spanning vectors

E
(
δT
)

deformation transfer energy
A system matrix of the transfer energy
b rhs of the transfer energy
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[5] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach,
M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, and
M. Stamminger. Real-time Non-rigid Reconstruction using an
RGB-D Camera. ACM TOG, 33(4):156, 2014. 2

https://www.youtube.com/watch?v=d-VaUaTF3_k
https://www.youtube.com/watch?v=Tsh_V3U7EfU
https://www.youtube.com/watch?v=8ZbCf7szjXg
https://www.youtube.com/watch?v=8_JxKKY7I_Y
https://www.youtube.com/watch?v=p6CJx_ZbaG4
https://www.youtube.com/watch?v=KDYaACGUt3k

