
Supplemental Material:
Efficient Image Optimization using Proximal Algorithms

1 Mathematical Framework

1.1 Generalized Objective

We model an image optimization problem in our framework as a
sum of penalties fi on linear transforms Kix with x ∈ Rn being
the unknown:

argmin
x

I∑
i=1

fi (Kix) with K =

K1

...
KI

 , (1)

where here K ∈ Rm×n is one large matrix that is composed of
stacked linear operators K1, . . . ,KI . The linear operator Ki ∈
Rmi×n selects a subset of mi rows of Kx. This subset of rows is
then the input for the penalty functions fi : Rmi → R.

The only assumption we make about the penalty functions
f1, . . . , fI is that they provide a black box for evaluating the func-
tion’s proximal operator. The proximal operator of a function f is
defined as

proxτf (v) = argmin
x

(
f(x) +

1

2τ
‖x− v‖22

)
,

where τ > 0 and v ∈ Rmi [Parikh and Boyd 2013]. The proximal
operator optimizes over the function in isolation, but incorporates
a quadratic term that can be used to link the optimization with a
broader algorithm. Proximal operators are an alternative to the tra-
ditional gradient and Hessian oracles used by first and second order
methods.

Similarly, the only assumption we make about each linear operator
Ki is that it provides a black box for evaluating the forward oper-
ator x→ Kix and the adjoint operator z→ KT

i z. This is a useful
abstraction because many linear operators that arise in optimization
problems from image processing are fast transforms, i.e., they have
methods for evaluating the forward and adjoint operator that are
more efficient than standard multiplication by the operator repres-
ented as a dense or sparse matrix. Common fast transforms in image
processing include the discrete Fourier transform (DFT), convolu-
tion, and wavelet transforms; see [Diamond and Boyd 2016] for
many more examples.

1.1.1 Compiling Problems to Efficient Solvers

We can solve Problem (1) using a variety of different existing
proximal algorithms. ProxImaL supports the Chambolle-Pock al-
gorithm [Chambolle and Pock 2011; Pock et al. 2009] ADMM
[Boyd et al. 2001], linearized ADMM [Parikh and Boyd 2013,
§4.2.2], and half-quadratic splitting [Geman and Yang 1995]. Each
of these algorithms splits the objective into a sum of two functions
g and h.

As discussed in the paper, the ProxImaL compiler splits problem
(1) into g and h via

g(x) =
∑
fi∈Ω

fi(x), h(z) =
∑
fi∈Ψ

fi(z),

where Ω and Ψ are a partition of the set of functions {f1, . . . , fI}.

In the paper we discussed our implementation of the Chambolle-
Pock and ADMM algorithms in detail. In the supplement we
explain our implementation of the linearized ADMM and half-
quadratic splitting algorithms, and discuss the convergence prop-
erties of all four algorithms.

Linearized ADMM implementation. The pseudo-code for lin-
earized ADMM is given in Algorithm 1. Our compiler uses the de-
fault hyper-parameters ρ = 1/‖K‖2, µ = ‖K‖2, x0 = 0, z0 = 0,
and λ0 = 0. With the default problem scaling, we have ‖K‖2 = 1.
In linearized ADMM the terms fi of g =

∑
i∈Ω fi can be any func-

tion with an efficient proximal operator. The default splitting into
Ω and Ψ is to include all quadratic functions in Ω.

Algorithm 1 Linearized ADMM to solve Problem (1)

1: Initialization: µ > ρ‖K‖22, (x0, z0, λ0).
2: for k = 1 to V do
3: xk+1 = prox g

µ
(xk − (ρ/µ)KT (Kxk − zk + λk))

4:
5: zk+1

j = prox fj
ρ

(Kjx
k+1
j + λkj ) ∀j ∈ Ψ

6: λk+1
j = λkj + (Kjx

k+1 − zk+1
j ) ∀j ∈ Ψ

7: end for

Linearized ADMM is a natural variant of standard ADMM. Recall
that ADMM applied to Problem (1) solves the optimization prob-
lem

minimize g(x) + (ρ/2)‖Kx− zk + λk‖22
as a subroutine. In linearized ADMM we replace the term

(ρ/2)‖Kx− zk + λk‖22

with its linearization plus quadratic regularization:

ρKT (Kx− zk + λk) + (µ/2)‖v − vk‖22.

The Pock-Chambolle algorithm is in fact linearized ADMM ap-
plied to the dual of Problem (1) [Chambolle and Pock 2011]. Pock-
Chambolle could therefore be implemented in ProxImaL as a sym-
bolic transformation that converts the problem representation into
its dual, combined with the linearized ADMM implementation. The
dual problem involves the conjugates of f1, . . . , fI from Problem
(1) (see Problem (3)). The proximal operator for the conjugate f∗i
can be evaluated using the proximal operator for fi and Moreau’s
Identity [Moreau 1965].

Half-quadratic splitting implementation. The pseudo-code for
half-quadratic splitting is given in Algorithm 2. Our compiler uses
the default hyper-parameters ρ0 = 1, α = 2, ρmax = 28, x0 = 0,
and z0 = 0. Our compiler only allows quadratic functions to be
included in Ω because then step 3 reduces to solving a least squares
problem. The default splitting into Ω and Ψ is the same as for
ADMM.

On the first glance, the half-quadratic splitting (HQS) implement-
ation looks similar to our ADMM implementation. However, the
key difference is the Lagrange multipliers in ADMM have been



Algorithm 2 Half-Quadratic Splitting to solve Problem (1)

1: Initialization: ρ0 > 0, ρmax > 0, α > 1, (x0, z0).
2: for k = 1 to V do
3: xk+1 = argmin

x

∑
i∈Ω fi(Kix)+ρk

∑
j∈Ψ ‖Kjx−zj‖22

4: zk+1
j = prox fj

ρk

(Kjx
k+1
j ) ∀j ∈ Ψ

5: ρk+1 = max{ρk ∗ α, ρmax}
6: end for

eliminated in HQS. The use of the Lagrange multipliers in ADMM
allows to have a fixed ρ. In HQS, by contrast, we need to scale
ρ → ∞. This scaling can cause both the quadratic step in line 3
and the proximal operator step in line 4 to be unstable. Thus, for the
HQS method to be stable, it is crucial to minimize the number of
splitting variables and find numerically accurate solutions to both
steps (which is not necessary for ADMM).

1.2 Convergence properties

In this section we discuss the conditions under which the solver al-
gorithms in ProxImaL converge. We assume that problem (1) has a
global minimizer and observes certain regularity conditions. Form-
ally, we assume that the problem

minimize
∑I
i=1 fi (zi)

subject to Kix = zi, i = 1, . . . , I,
(2)

is feasible and bounded below, with optimal value equal to the op-
timal value of its Lagrange dual

maximize −
∑I
i=1 f

∗
i (λi)

subject to KT
i λi = 0, i = 1, . . . , I.

(3)

Under our assumption on problem (1), our implementation of
Chambolle-Pock is guaranteed to converge to a global minimizer
of problem (1) if the functions f1, . . . , fI are proper, convex, and
lower semicontinuous. The hyper-parameters τ and σ must be
chosen such that στ‖K‖22 < 1 [Chambolle and Pock 2011].

Our implementation of ADMM is guaranteed to converge to a
global minimizer of problem (1) if the functions f1, . . . , fI are
closed, proper, and convex. Any choice of ρ > 0 is valid [Boyd
et al. 2001]. Variations of ADMM where we use a relaxation para-
meter α ∈ (0, 2) or compute the variable updates inexactly still
guarantee convergence to a global minimizer under reasonable con-
ditions [Eckstein and Bertsekas 1992].

Our implementation of linearized ADMM is guaranteed to con-
verge to a global minimizer of problem (1) if the functions
f1, . . . , fI are closed, proper, and convex. The hyper-parameters
ρ and µ must be chosen such that ρ > 0 and µ > ρ‖K‖22 [Esser
et al. 2010].

The convergence analysis for our implementation of half-quadratic
splitting is more complex than for the other algorithms in Prox-
ImaL . When Ω = {f1, . . . , fI}, and the x-update is com-
puted exactly, convergence to a global minimizer is guaranteed for
ρmax = ∞ [Nocedal and Wright 2006, Chap. 17]. If the func-
tions f1, . . . , fI are closed, proper, and convex, and K1, . . . ,KI

are full rank, then for constant ρk (i.e., α = 1), our implementation
converges to a global minimizer of the problem

minimize
∑I
i=1 fi (zi) + ρk‖Kix− zi‖22,

where the equality constraints have been relaxed [Beck 2015]. In
the fully general scenario where f1, . . . , fI are convex but Ψ 6= ∅

and ρk increases, our implementation is a heuristic, but one used
successfully in applications, and strongly motivated by theoretical
analysis [Wang et al. 2008].

We have only discussed convergence when problem (1) is con-
vex. Recent work has shown, however, that for nonconvex prob-
lems under certain conditions Chambolle-Pock, ADMM, linearized
ADMM, and variants of half-quadratic splitting are guaranteed to
converge to a stationary point [Attouch et al. 2011; Möllenhoff et al.
2015; Li and Pong 2015; Robini and Zhu 2015].

ProxImaL does not force the user to obey the restrictions on the
functions f1, . . . , fI and the algorithm hyper-parameters needed
to guarantee convergence. Many state-of-the-art results in image
optimization involve applying proximal algorithms to nonconvex
problems for which it is difficult to provide guarantees about con-
vergence (e.g., [Krishnan and Fergus 2009; Heide et al. 2014]).

1.3 Stopping criteria

There are many possible ways to determine when the solver al-
gorithms have converged, and different choices may work better
for different problems. A reasonable, general purpose stopping
criteria is that proposed in [Boyd et al. 2011], in which the al-
gorithm terminates when the norms of the primal residual rk+1 =
Kxk+1−zk+1 and dual residual sk+1 = ρKT (zk+1−zk) fall be-
low certain threshholds. The threshhold for the norm of the primal
residual is given by

εpri =
√
mεabs + εrel max{‖Kxk‖2, ‖zk‖2},

where εabs and εrel are chosen by the user. By default Prox-
ImaL uses εabs = εrel = 10−3. Similarly, the threshhold for the
norm of the dual residual is given by

εpri =
√
nεabs + εrel‖KTλk‖2.

This criterion is used in our framework for ADMM, LADMM and
PC. Note that all of these methods are variants of the ADMM
method [Chambolle and Pock 2011]. HQS suffers from instabil-
ities for ρ → ∞. Hence, in practice often a stopping criterion is
used that limits ρ, see [Krishnan and Fergus 2009]. In our imple-
mentation we use default value of ρmax = 28. To add robustness
for small values of α we add a progress-based stopping criterion

‖xk+1 − xk‖2 + ‖zk+1
j − zkj ‖2 < nεhq,

where our default value for εhq is 1e − 6. Finally, we allow the
user to change all parameters of the stopping criteria for each of
the implemented methods. In practice often an estimate of modest
accuracy, but low computational cost, might be desired.

1.4 Example problem

As an example illustrating our theoretical framework, additional to
the one in the main draft, we consider deconvolution with cross-
channel prior [Heide et al. 2013]. The corresponding objective can
be formulated as:

vopt = argmin
x

‖Dx− b‖22 + µ
∑
a

‖Hax‖1 +

γ
∑
a

‖Hax−Habr‖1,
(4)



We can now frame our problem from Eq. (4) in the more general
form from Eq. (1):

xopt = argmin
x

‖Dx− b‖22 + µ
∑
a

‖Hax‖1+

γ
∑
a

‖Hax−Habr‖1

= argmin
x

f1(Dx) +

2∑
a=1

f(i+1)(Hax) + f(i+3)(Hax)

= argmin
x

5∑
i=1

fi (K(i)x) , with K =

D
H1

H2

 , and

(5)

f1(v) = ‖v − b‖22, f2,3(v) = µ‖v‖1, f4,5(v) = ‖v − α‖1

Having formulated our problem as a sum of functions operating on
the stacked matrix K, we can formulate the proximal operators for
the functions f2...5:

proxθ‖·‖1(v) = max

(
1− θβ

|v| , 0
)
� v Shrinkage

proxθ‖ · −α‖1(v) = argmin
x

θ‖x− α‖1 +
1

2
‖x− v‖22

= α+ argmin
z

θ‖z‖1 +
1

2
‖z + α− v‖22 with z := x− α

= α+ argmin
z

θ‖z‖1 +
1

2
‖z− (v − α)‖22

= proxθ‖·‖1(v − α) + α

= max

(
1− θβ

|v − α| , 0
)
� v + α Cross-shrinkage

(6)

where here α = Habr . To derive the second proximal operator, we
have used a simple substitution trick via substitution of z := x−α.
The proximal operator then reduces to the shrinkage operator.

Note that we give here the proximal operators for the primal func-
tions. The proximal operators for their convex conjugates can be
easily computed by using Moreau’s identity [Moreau 1965].

1.4.1 Solving the example problem using ADMM

ADMM solves the joint minimization of the sum of all fi terms
into a sequence of separable minimizations w.r.t. fi. The quadratic
subproblem in line 3 of Alg. 2 from the main draft can be efficiently
solved in the Fourier domain (due to our specific choice of Ω) as
shown below in Eq. (7). To simplify notation we use the substitute

variable ωj := zj − λkj here.

xopt = argmin
x

1

2

∑
i∈{1}

fi(x) +
ρ

2

∑
j∈{2,3}

‖Kjx− ωj‖22

= argmin
x

1

2
‖Dx− b‖22 +

ρ

2
‖H1x− ω2‖22 +

ρ

2
‖H2x− ω3‖22︸ ︷︷ ︸

Ω(x)

⇔ ∂Φ(Ωx)

∂x
= (DTD + ρHT

1 H1 + ρHT
2 H2)xopt−

DTb + ρHT
1 ω2 + ρHT

1 ω3
!
= 0

⇔ (DTD + ρ

2∑
a=1

HT
aHa)xopt = DTb + ρ

2∑
a=1

HT
a ωa+1

⇔ xopt = F−1

(
F (D)∗F (ω1) + ρ

∑2
a=1 F (Ha)∗F (ωa+1)

F (D)∗F (D) + ρ
∑2
a=1 F (Ha)∗F (Ha)

)
(7)

The remaining parts Alg. 2 in the main draft are the proximal oper-
ators in line 4 and the Lagrange multiplier update in line 5. Previ-
ously, in Eq. (6), we have defined very efficient point-wise updates
for the proximal operators of prox1/ρfΨ

. The lagrange multiplier
update from line 5 is a point-wise operation as well, and therefore
very efficiently solvable.

For this specific ADMM implementation, we note that the iterates
are empirically converged in about 50 iterations. The primal-dual
method from [Chambolle and Pock 2011] performs similar in this
case. Note that the specific partition of the penalties and all sub-
stitutions apply directly for the derivation of our method using the
method from [Chambolle and Pock 2011].

1.4.2 Solving the example problem using Half-Quadratic
Splitting

The subproblem in line 3 of Alg. 2 can be solved in the Frequency
domain analogously to the first step in the ADMM method from
Eq. (7). The proximal operators are also same as in the ADMM
case and given in Eq. (6).

Using Half-Quadratic Splitting, we observe that we can achieve
almost converged results in 5 iterations, which means a speedup
of ×60 compared to [Heide et al. 2013] and ×10 compared to
ADMM. Note that accurately solving the proximal operators from
Eq. (6) is key here (as approximations will lead to instabilities in
enforcing the consensus constraint).

1.5 Example using Poisson Noise Fitting

A further example is extending the problem from Eq. (4) by a Pois-
son noise model. In this case, we model the observed image b as a
sample of a random variable b̃:

p(b̃ = b | λ) =

n∏
i=1

λbi
i e
−λi

bi!
, (8)

where here the notation (·)i denotes the selection of the i-th com-
ponent of the image vector given as argument. Following the
Bayesian maximum a posteriori criterion, which is also proposed
in [Figueiredo and Bioucas-Dias 2009], the quadratic dataterm



GT Observation PSNR = 26.7 dB PSNR = 28.7 dB

(a) Sharp ground truth
(b) Blurred observation corrupted by

Poisson noise (PSF in the top left)
(c) Deconvolved result using

`2-optimization assuming Gaussian noise
(d) Reconstruction using our optimization

assuming Poisson noise

Figure 1: Effect of Poisson noise on deconvolution with large kernels: This example demonstrates that proper noise modeling leads to
significant gains in reconstruction quality for large blur kernels. To only demonstrate the effect of the noise model, we did not use cross-
channel information for this example. Since the Poisson distribution can be approximated well by a normal distribution for large values of
the mean, the most significant improvements of using the proper noise model can be found in the low-intensity regions.

‖Dx− b‖22 from Eq. (4) then becomes the negative log-likelihood
of p(b̃ = b | x), that is

− log
(
p(b̃ = b | x)

)
=

n∑
i=1

Γ
(
(Dx)i ,bi

)
with

Γ(a, b) = a− b log(a) + indR+(a),

(9)

where indR+(a) is the indicator function for the positive orthant.
We can now easily bring this into our generalized objective form
from 1 by setting

f1(x) = x− b log(x) + indR+(x) (10)

The corresponding proximal operator for the changed f1 is

proxθf1(·)(v) =
v − θ

2
+

√
θb +

(θ − v)2

4
Poisson
Penalty (11)

This analytic solution for the proximal operator of f1 results in
a root-finding problem of a second-order polynomial as shown in
Eq. (12). Due to the positivity constraint in f1 the minimum is
uniquely defined by the positive root:

proxθf1(·)(v) = argmin
x

f1(x) +
1

2θ
‖x− v‖22

= argmin
x∈R+

x− b log(x) +
1

2θ
‖x− v‖22︸ ︷︷ ︸

Υ(x)

⇔ ∂Υ(xopt)

∂x
= 1− b

xopt
+

1

θ
xopt −

1

θ
v

!
= 0 s.t. xopt ∈ R+

⇔ x2
opt + (θ − v) · xopt − θb = 0 s.t. xopt ∈ R+

⇔ xopt =
v − θ

2
+

√
θb +

(θ − v)2

4

Having defined the changed f1 and the corresponding proximal op-
erator, we can directly apply our framework derived in Sec 1.1,
which maps directly to the ADMM algorithm or Half-Quadratic
Splitting method as described above. The only thing that changes
is that the set Ψ is now empty (since f1 is now no longer a simple

quadratic as defined previously) and consequently Ψ := {1, 2, 3}.
This means new auxiliary variables for Kix are introduced. The
price, that we pay for being able to solve for Poisson degraded ob-
servations are now again more iterations (necessary to enforce the
consensus constraints). However, the quality is quite significantly
affected by the more proper noise model as demonstrated in Fig. 1.
Note also that we cannot simply use a variance stabilization trans-
form here (such as the Anscombe transform) since the observations
are mixed together in the convolution with the kernel.

2 Additional Details for Implementation

In Table 3, we compare runtimes for various options of the Prox-
ImaL compiler and compare them for the specific example of TV-
regularized deconvolution. We show runtimes for an implementa-
tion with NumPy and for the corresponding Halide implementation
as well as for the gradient operator implemented in the primal do-
main and via the convolution theorem in the Fourier domain. Fur-
ther, Table 4 lists runtimes for a range of different linear operators
and some of the simple proximal operators for implementations in
NumPy and Halide.

2.1 Proximal operators

In this section we discuss the full set of proxable functions provided
by ProxImaL . The inputs to proximal operators are real vectors, ob-
tained by flattening the input into a vector. We provide closed form
expressions for the proximal operators when possible and otherwise
give references with the precise definition of the proximal operator.

Sum-squares. The sum_squares(x) function represents the
squared `2-norm f(x) = ‖x‖22, where x ∈ Rn. The proximal
operator is given by

proxτf (v) =
1

2τ + 1
v.

The weighted_sum_squares(D,x) function is a variant defined as
f(x) = ‖Dx‖22, where D ∈ Rn×n is a diagonal matrix. The
proximal operator is given by

proxτf (v) = (2τDTD + I)−1v.

The weighted variant is used to absorb diagonal linear operators
into the sum_squares proxable function.

`1-norm. The norm1(x) function represents the `1-norm f(x) =
‖x‖1, where x ∈ Rn. The proximal operator is given by

proxτf (v)i = sign(vi) max{|vi| − τ, 0}, i = 1, . . . , n,



Spatial Grad direct off + split off direct off + split on direct on + split off direct on + split on
CP 30.2 40.8 32.5 13.9
ADMM 313.7 70.2 323.2 67.6
LADMM 53.6 32.2 53.8 11.6
HQS 2.6 2.4 2.6 2.4
Conv. Grad direct off + split off direct off + split on direct on + split off direct on + split on
CP 51.8 59.1 51.8 26.8
ADMM 899.3 215.8 103.1 25.9
LADMM 116.3 71.7 116.7 43.6
HQS 5.3 5.4 1.4 1.2

Figure 2: Runtime of a TV-regularized deconvolution problem for
NumPy implementation.

Spatial Grad direct off + split off direct off + split on direct on + split off direct on + split on
CP 16.3 14.0 15.9 7.2
ADMM 126.8 29.8 125.9 29.6
LADMM 27.9 12.8 28.4 6.8
HQS 1.1 1.0 1.1 1.0
Conv. Grad direct off + split off direct off + split on direct on + split off direct on + split on
CP 15.6 17.0 15.4 8.8
ADMM 188.0 48.1 28.0 6.9
LADMM 34.1 19.8 31.9 11.7
HQS 1.1 1.1 0.5 0.5

Figure 3: Runtime (in seconds) of a TV-regularized deconvolution
problem for Halide implementation. We evaluate four different al-
gorithms that are implemented in ProxImaL. When the direct para-
meter is on, the ProxImaL compiler automatically replaces CG with
a fast direct method. The split option further indicates whether the
compiler’s intelligent rewriting and splitting are used. We evalu-
ate two implementations of the TV prior: a finite differences im-
plementation in the spatial domain (top table) and a convolutional
implementation via Fourier multiplication (bottom table).

`2-norm dot product subsample subsample* grad grad* convolution
Halide 41.6 15.6 72.6 72.6 94.8 237.4 121.4
NumPy 245.8 96.6 356.0 356.0 1188.0 713.1 7790.9

convolution* warp warp* norm1 group norm1 poisson prox FFT inversion
Halide 121.4 457.6 367.8 27.1 67.8 44.7 9.4
NumPy 7790.9 153.1 474.4 201.8 1036.6 265.2 23.4

Figure 4: Runtimes (in ms) for linear operators and some of the
proximal functions implemented with NumPy and Halide.

also known as soft-thresholding. The weighted_norm1(D,x) func-
tion is a variant defined as f(x) = ‖Dx‖1, where D ∈ Rn×n is a
diagonal matrix. The proximal operator is given by

proxτf (v)i = sign(vi) max{|vi| − τ |Dii|, 0}, i = 1, . . . , n.

The weighted variant is used to absorb diagonal linear operators
into the norm1 proxable function.

Poisson norm. The poisson_norm(x) function represents the
negative log-likelihood under a Poisson noise model, given by

f(x) =

n∑
i=1

xi − bi log(xi) + I(0,+∞)(xi),

where b ∈ Rn+, x ∈ Rn, and I(0,+∞) is the indicator function on
the interval (0,+∞). The proximal operator is given by

proxτf (v)i =
vi − τ

2
+
√
τbi + (τ − vi)2/4, i = 1, . . . , n.

The weighted_poisson_norm(D,x) function is a variant defined as

f(x) =

n∑
i=1

Diixi − bi log(Diixi) + I(0,+∞)(Diixi),

where D ∈ Rn×n is a diagonal matrix. The proximal operator is
given by

proxτf (v)i =
vi − τDii

2
+
√
τbi + (τDii − vi)2/4, i = 1, . . . , n.

The weighted variant is used to absorb diagonal linear operators
into the poisson_norm proxable function.

Nonnegativity constraint. The nonneg(x) function represents
the indicator f(x) =

∑n
i=1 I[0,+∞)(xi), where x ∈ Rn. The

proximal operator is given by

proxτf (v)i = max{vi, 0}, i = 1, . . . , n.

The weighted_nonneg(D,x) function is a variant defined as

f(x) =

n∑
i=1

I[0,+∞)(Diixi),

where D ∈ Rn×n is a diagonal matrix. The proximal operator is
given by

proxτf (v)i = max{Diivi, 0}/Dii, i = 1, . . . , n.

The weighted variant is used to absorb diagonal linear operators
into the nonneg proxable function.

Group `1-norm. The group_norm1(x, dims) function represents
the sum of `2-norms f(x) =

∑p
i=1 ‖xgi‖2, where x ∈ Rn and

g1, . . . , gp is a partition of {1, . . . , n} obtained by flattening x
along the chosen dimensions. The proximal operator is given by

proxτf (v)gi = vgi max{1− τ/‖vgi‖2, 0}, i = 1, . . . , p,

also known as group soft-thresholding.

Denoising. Due to the quadratic proximity term, a proximal op-
erator can also be interpreted as a Maximum a Posteriori (MAP)
estimate for a Gaussian likelihood, i.e. a Gaussian denoiser, [Heide
et al. 2014]. For a Gaussian likelihood p(x|v) and an arbitrary ex-
ponential prior p(x)

p(x|v) ∝ exp

(
−‖x− v‖22

2σ2

)
p(x) ∝ exp ( −Γ(x) ) ,

we get the following MAP estimate, that is a proximal operator

proxσ2Γ(v) = argmin
x

(
Γ(x) +

1

2σ2
‖x− v‖22

)

Consider a family of Gaussian denoising algorithms {DΓ
σ : σ > 0}

using the prior from above, which estimate x0 from x0 + σz with
z ∼ N (0, I). We can then formulate

proxτΓ(v) = DΓ√
τ (v),

Note, that it is not necessary to derive Γ in order to evaluate the
proximal operator, only DΓ

σ has to be known. Note that depending
on Γ this operator can be non-convex. If Γ is the indicator function
of a convex set, DΓ√

τ becomes the projection onto this set. The
(non-convex) proximal operatrs patch_NLM and patch_BM3D prior
implement the non-local means and BM3D denoiser with algorithm
with adapted weights.

2.2 Linear operators

In this section we discuss the full set of linear operators provided
by ProxImaL . The inputs to and outputs from linear operators are
arbitrary n-dimensional real arrays. We note when an operator or
its Gram matrix is diagonal in the spatial or frequency domain.



Convolution. The conv(k,x) operator represents circular convo-
lution of an n-dimensional array x with a known n-dimensional
kernel k. The kernel k is automatically zero-padded to be the same
size as x. The adjoint is circular convolution with the kernel k̃ given
by

k̃i1,...,in = k−i1,...,−in ,

where k’s indexing is zero-based and periodic. Non-circular bound-
ary conditions are imposed through composition with additional
linear operators, such as mul_elemwise to zero-pad x. The conv

is diagonal in the frequency domain.

Subsample. The subsample(x, steps) operator extracts every
stepsi entry of x along axis i, starting with the entry stepsi−1. The
adjoint inserts stepsi before each entry in axis i. The subsample

operator is Gram diagonal.

Element-wise multiplication. The mul_elemwise(w, x) oper-
ator represents element-wise multiplication of x with a fixed array
w. The adjoint also represents element-wise multiplication with w.
The mul_elemwise operator is diagonal.

Scalar multiplication. The scale(c,x) operator represents mul-
tiplication by a fixed constant scalar c ∈ R. The adjoint is also
multiplication by c. The scale operator is diagonal.

Sum. The sum(x1, x2, ..., xk) operator represents summing k
arrays x1, . . . , xk. The adjoint copies a single input into k different
outputs.

Vstack. The vstack(x1, x2, ..., xk) operator represents ver-
tically stacking k arrays x1, . . . , xk into a single array. The adjoint
splits a single array into k different subarrays. The vstack operator
is diagonal.

Gradient. The grad(x,[dims,periodic]) operator represents the
discrete gradient of x across the chosen dimensions. By default the
gradient is computed across all dimensions. The adjoint computes
the negative divergence across the chosen dimensions. The grad

operator is diagonal in the frequency domain if periodic boundary
conditions are enabled. By default boundary conditions are non-
periodic.

Warp. warp(e, H) operator represents Interprets e as a 2D image
and warps it using the homography H. We use a bilinear resampling
function. Note that the warps are not limited to homography trans-
formation, but arbitrary pixel transforms can be supported.

Pixel-wise Transforms. mul_color(e, C) operator represents
Performs a blockwise 3× 3 color transform using the color matrix
C, or the predefined opponent (opp) and YUV (yuv) color spaces.
The mul_color operator is block diagonal.

Reshape. The reshape(x, dims) operator reinterprets x as an
array with the given dimensions (e.g., flattening a matrix to a vec-
tor). The adjoint reinterprets an array with the given dimensions as
an array with the original dimensions of x. The reshape operator is
diagonal.

2.3 Adding new operators

Adding additional proximal and linear operators is straightforward.
The following code defines a new proxable function. The function

is defined as a class inheriting from the base class ProxFn.

1 class new_func(ProxFn):
2 def __init__(...):
3 # Custom initialization code.
4
5 def prox(self, tau, v):
6 # Code to compute the function’s proximal operator.
7 return ...
8
9 def eval(self, v):

10 # Code to evaluate the function.
11 return ...

The eval method may be omitted if the function cannot be expli-
citly computed, as with the patch_NLM function.

The following code defines a new linear operator. The operator is
defined as a class inheriting from the base class LinOp.

1 class new_linop(LinOp):
2 def __init__(...):
3 # Custom initialization code.
4
5 def forward(self, inputs, outputs):
6 # Read from inputs, apply operator, and write to outputs.
7
8 def adjoint(self, inputs, outputs):
9 # Read from inputs, apply adjoint, and write to outputs.

The class should also define the methods is_diag, is_gram_diag,
and get_diag if the linear operator K or its Gram matrix KTK is
diagonal, so that the ProxImaL compiler can exploit this fact. Simil-
arly, the class should define the methods is_fdiag, is_gram_fdiag,
and get_fdiag if the linear operator or its Gram matrix is diagonal
in the frequency domain. If the methods are not defined, the default
implementations are used, which assume that neither the operator
nor its Gram matrix are diagonalizable in the spatial or frequency
domain.

3 Additional Details for Results

In this section, we detail additional results that were reported in
PNSR tables in the primary text and we also show larger and exten-
ded versions of other figures.

Demosaicking Table 5 reports individual PSNR measurements
that were only reported in an aggregated form in the primary text.
We list individual PSNRs and also the average PSNR for all 18 test
images. Figures 6 and 7 show each of the test images. In partic-
ular, we show the target image, the color-coded mosaick, the re-
construction achieved by FlexISP, its absolute error, the ProxImaL
reconstruction, and its absolute error. Qualitatively, both FlexISP
and ProxImaL achieve almost indistinguishable results.

Burst Denoising We show the full sensor image of one of the
noisy frames for each of the burst denoising examples in Figure 8.
The magnified regions that are also shown in the text are highlighted
and shown in addition to the noisy frames. ProxImaL achieves an
image quality comparable to the commercial reference software.
Figure 9 shows simulations of another dataset, were we compare
several different image priors.

Poisson Deconvolution In addition to the averaged PSNR val-
ues for the test dataset shown in the primary text, we show indi-
vidual PSNR values for each example image in Table 10. We com-
pare the 12 test images shown in Figures 11 and 12 for 5 different
blur kernels and for three different reconstruction methods. On av-
erage ProxImaL achieves the best results.



Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avg
FlexISP, PSNR R 30.66 35.85 36.16 41.34 38.24 41.07 40.01 39.84 38.78 40.01 41.30 41.28 43.99 40.46 38.31 35.62 34.72 35.41 38.50
FlexISP, PSNR G 33.75 40.43 38.60 44.68 40.13 45.31 41.90 44.09 43.90 44.08 43.67 43.85 46.40 44.13 43.52 36.37 40.20 38.07 41.84
FlexISP, PSNR B 28.50 33.63 32.78 37.07 32.38 37.93 37.96 39.40 38.36 38.32 39.83 39.03 39.20 36.86 39.86 35.07 33.76 37.18 36.50

ProxImaL, PSNR R 30.73 35.87 36.19 41.32 38.24 41.02 40.24 40.03 38.82 40.00 41.33 41.29 44.04 40.50 38.33 35.62 34.77 35.43 38.54
ProxImaL, PSNR G 33.80 40.50 38.64 44.65 40.20 45.38 42.14 44.14 43.97 44.12 43.72 43.92 46.49 44.20 43.55 36.41 40.23 38.13 41.90
ProxImaL, PSNR B 28.49 33.65 32.82 37.07 32.40 37.89 38.19 39.42 38.38 38.35 39.87 39.05 39.23 36.88 39.87 35.10 33.79 37.12 36.53

Figure 5: Peak signal-to-noise-ratios for demosaicking. We report PSNR values in dB for each color channel of the 18 images and compare
the quality achieved with FlexISP and ProxImaL. In the primary text, we only reported the average values show in the right-most column.

4 Additional Details for Phase Retrieval

In this section, we provide additional detail on the phase retrieval
problem discussed in the main paper. We first review phase retrieval
and then explain the ADMM method corresponding to the Prox-
ImaL code in the application section. The results of this method are
the ones shown in the primary text.

4.1 Background and Algorithms

Phase retrieval attempts to recover a real or complex signal, given
observations of the amplitude of linear measurements. We focus on
the case where the linear operator is the Fourier transform operator,
i.e., solve

find x

subject to b = |Fx|
(12)

where b ∈ Rn is the amplitude measurement of a Fourier trans-
formed target signal, x ∈ Rn is this target signal, and F ∈ Rn×n
is the discrete Fourier transform operator. This problem arises in
various applications like X-ray crystallography, coherent diffrac-
tion imaging and phase microscopy, where we can only measure
the intensity of Fourier transformed signal without the phase.

The phase retrieval problem is non-convex due to the phase con-
straint b = |Fx|. The constraint is underdeterimined, since for
any diagonal matrix D ∈ Cn×n whose diagonal entries have unit
magnitude, F−1(Db) satisfies the constraint. Therefore, extra con-
straints or priors are necessary to recover the desired signal.

A common approach is to assume that the signal is non-negative
with finite supportD. One class of algorithms for phase retrieval al-
ternates between projection onto the constraint that x ≥ 0 with sup-
port D and projection onto the phase constraint [Gerchberg 1972;
Fienup 1982; Bauschke et al. 2002; Bauschke et al. 2003; Elser
2003; Luke 2005]. The projection Ps onto the non-negative sup-
port constraint is given by

(Psx)i =

{
max{0, xi} if i ∈ D
0 otherwise

(13)

The projection Pm onto the phase constraint is given by

Pmx = F−1(v(x)),

where (v(x))i =

bi
(Fx)i
|(Fx)i|

if (Fx)i 6= 0

bi otherwise
(14)

The hybrid input-output (HIO) algorithm is the most popular and
widely used of the algorithms based on alternating projections
[Fienup 1982]. The algorithm is given by the update

xn+1
i =

{
(PsPmxn)i if i ∈ D
xni − β(PsPmxn)i otherwise

(15)

HIO improves on simple alternating projections by including a
feedback parameter β, which reduces the chance of being trapped
at a local minimum.

Usually the support D is unknown, in which case algorithms like
HIO must be augmented with a method for estimating the support.
Given a Fourier measurement, the autocorrelation function, also
known as the Patterson function, provides an initial guess

P (x) = F−1(|x|2) (16)

Binarizing the output of the autocorrelation (the threshold is usu-
ally 4%) gives a sufficiently accurate estimate of the support.

Often the initial guess is updated as the algorithm progresses. There
are two common approaches to updating the support, both based
on the Shrinkwrap algorithm [Marchesini et al. 2003]. The two
approaches differ in the threshold used to estimate the support.
One performs thresholding on the current estimate with a fixed
threshold, while the other picks the threshold such that a fixed area
is included in the support. The original Shrinkwrap algorithm is
defined as follows.

Let x be the input image, G(kr) a normalized Gaussian blur-
ring kernel with a user-defined standard deviation kr , and η the
threshold to apply. The support D is then computed by

1. xg = |x| ∗G(kr)

2. c = ηmax(xg)

3. Di =

{
1 if xgi ≥ c
0 if xgi < c

where D = 1 defines the region inside the support and D = 0
defines the region outside the support.

4.2 Our approach

HIO with Shrinkwrap gives a reasonable estimate of the true image,
but artifacts are common in the reconstruction [Osherovich 2012;
Fannjiang and Liao 2012]. We instead approach phase retrieval by
solving the TV regularized reconstruction problem

argmin
x

1

2
‖|Fx| − b‖22 + λ‖|∇x‖1 + ID∩[0,+∞)(x) (17)

where ∇ is the gradient operator. The indicator function adds the
support constraint and a non-negativity constraint. We solve the
problem using the ADMM implementation in ProxImaL . The prob-
lem is nonconvex, so we are not guaranteed to find a global op-
timum. We use the output of HIO as an initial point x0. A fixed
support estimate from this input was sufficient in our tests.

The x-update in ADMM requires approximately solving a nonlin-
ear least-squares problem. In particular, we must minimize the
function

f(x) =
1

2
‖|Fx|−b‖22 +

ρ1

2
‖∇x− v1‖22 +

ρ2

2
‖x− v2‖22 (18)

for given ρ1, ρ2,v1,v2. We minimize f(x) using L-BFGS. The



Figure 6: Individual results for demosaicing of datasets 1–9.



Figure 7: Individual results for demosaicing of datasets 10–18.



Figure 8: Burst denoising and demosaicking from data captured with a Nexus 5 cellphone camera. The results achieved by ProxImaL are
comparable to, if not better than, the HDR+ application.

gradient is given by

∇f(x) = x−F−1

(
b · Fx|Fx|

)
+ρ1∇T (∇x−v1)+ρ2(x−v2)

(19)
The function f(x) is non-convex, so we are not guaranteed to find
the global optimum. However, we use the current iterate xk as a
starting point, which lets us minimize f(x) reliably in practice. It is
important to not that different optimization algorithms and different
splittings lead to different quadratic terms f(x). In particular, we
found that the slack term including ∇ regularizes the gradient for
the L-BFGS substep. Splitting in a different way without including
this term often causes the L-BFGS step to get stuck in local minima.

4.3 Implementation & Experiment

We compared our approach of combining HIO with ADMM
(HIO+ADMM), implemented in our framework, with a more stand-
ard approach of combining HIO and error reduction (HIO+ER)
[Fannjiang and Liao 2012]. For both algorithms, we ran HIO for

1000 iterations with feedback parameter β = 0.9. The initial sup-
port was generated with the Patterson function using 4% threshold.
Every 20 iterations, fixed-threshold Shrinkwrap algorithm was ap-
plied to update the support. The Gaussian blur kernel started with σ
equals 3 and reduced by 1% every application down to a minimum
of 1.5. We tested Shrinkwrap thresholds of 0.05, 0.10, 0.15 and 0.20
and manually picked the best result. The error reduction algorithm
ran for 100 iterations, which was enough to achieve a sufficiently
small error in the Fourier domain and relative difference between
iterations.

We used four standard test images and 2D projections of four mo-
lecules’ electron density maps from the PDB protein database. Test
images were resized to 128 × 128 and zero-padded to 256 × 256,
resulting in 2x oversampling in Fourier domain. Fig. 14 shows
the reconstruction result with a 2D projection of caffeine’s electron
density map. The estimated support in this case is inaccurate and
the HIO+ER result is poor, with many artifacts. The HIO+ADMM
result, by contrast, improves the reconstruction fidelity while redu-
cing artifacts.



Figure 9: Burst denoising and demosaicking for a simulation. For this example, we evaluate a range of different image priors, including
BM3D, the fast approximation of non-local means (NLM) implemented by OpenCV, and a slow full implementation of NLM.
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MÖLLENHOFF, T., STREKALOVSKIY, E., MOELLER, M., AND
CREMERS, D. 2015. The primal-dual hybrid gradient method
for semiconvex splittings. SIAM Journal on Imaging Sciences 8,
2, 827–857.
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Figure 11: Poisson deconvolution results for test images 1–6. Note that all test images are scaled to the same aspect ratio for convenience of
visualization, but each of them actually has a slightly different aspect ratio and resolution.



Figure 12: Poisson deconvolution for test images 7–12. Note that all test images are scaled to the same aspect ratio for convenience of
visualization, but each of them actually has a slightly different aspect ratio and resolution.



Figure 13: (left) the cameraman with extra padding;(middle) Four-
ier amplitude of padded image in log space;(right) output of auto-
correlation function.

Figure 14: (left) 128 × 128 2D projection of caffeine’s electron
density map;(left middle) 256× 256 groundtruth support;(middle)
HIO+ER output(29.27db);(right middle)HIO+ADMM out-
put(34.13db);(right)Estimated support


