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Figure 1: We use commodity RGB-D sensors to capture people in common everyday actions within reconstructed real-world indoor environ-
ments (left). Using this pose and 3D scene data we learn a set of prototypical interaction graphs (PiGraphs) containing priors on the human
pose and object geometry during interaction (middle). We then generate likely poses and arrangements of objects given the action (right).

Abstract

We learn a probabilistic model connecting human poses and ar-
rangements of object geometry from real-world observations of in-
teractions collected with commodity RGB-D sensors. This model
is encoded as a set of prototypical interaction graphs (PiGraphs), a
human-centric representation capturing physical contact and visual
attention linkages between 3D geometry and human body parts. We
use this encoding of the joint probability distribution over pose and
geometry during everyday interactions to generate interaction snap-
shots, which are static depictions of human poses and relevant ob-
jects during human-object interactions. We demonstrate that our
model enables a novel human-centric understanding of 3D content
and allows for jointly generating 3D scenes and interaction poses
given terse high-level specifications, natural language, or recon-
structed real-world scene constraints.
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1 Introduction

Computer graphics has made great progress in enabling people to
create visual content. However, we still face a big content creation
bottleneck. In particular, designing 3D scenes and virtual character
interactions within them is still a time–consuming task requiring
expertise and much manual effort. A common theme in address-
ing the content creation challenge in various subfields of graphics
has been to leverage data in order to build statistical methods for
automated content generation.

In character animation, motion capture technology and an orga-
nized effort to collect human motion data—such as in the widely
used CMU Motion Capture Dataset—led to much progress in data-
driven animation methods. Models of human motion and learned
character controllers have made it easier to design virtual character
animation. However, prior work in animation typically focuses on
the character motion, meaning that the surrounding environment is
not modeled directly. In some cases motion capture datasets use
simple props (e.g., folding chairs [Ofli et al. 2013]) or specialized
setups (e.g., instrumented kitchens [De la Torre et al. 2009; Tenorth
et al. 2009]). Predominantly, the configuration of the 3D scene the
person is moving in is not explicitly correlated with the observed
human poses, nor is it used to condition the poses.

Work in geometric analysis has followed a similar trajectory. The
increasing availability of 3D object mesh data led to work in data-
driven shape synthesis [Kalogerakis et al. 2012; Huang et al. 2015;
Yumer et al. 2015]. The domain of scenes has also seen its share
of data-driven methods in the line of work addressing scene synthe-
sis [Yu et al. 2011; Fisher et al. 2012; Xu et al. 2014]. However, the
data and models used in this work implicitly ignore the presence
of people and represent scenes and objects independently of human
interaction. A notable exception is some recent work for predicting
human pose given 3D objects [Kim et al. 2014] and work showing
that an explicit model of human presence and object affordances
can improve scene synthesis [Fisher et al. 2015].

Though modeling 3D scenes and modeling human motion have
been addressed extensively decoupled from one another, much of
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the challenge in 3D content creation lies where the two come to-
gether; i.e., when characters interact with 3D environments. There
is work on specific tasks such as path planning and grasping in both
graphics and robotics. One approach to looking at a more general
set of interactions is to try and describe the interaction with natu-
ral language. But generating even static interaction scenarios from
high–level natural language specifications such as “person reading
a book while sitting on a couch” is very challenging. Many implicit
constraints involving physical contact, static support and attention
need to be inferred—this is true of most everyday interactions with
common objects such as furniture and electronics. There has been
some seminal early work in the WordsEye system of Coyne and
Sproat [2001] and the definition of “Smart Objects” by Kallmann
and Thalmann [1999]. A data-driven revolution such as the one
seen in animation and scene synthesis research has yet to happen
for generating characters interacting with 3D environments.

In this paper, we bridge the gap between human pose modeling and
3D scene synthesis. We present a data-driven approach for gener-
ating interaction snapshots; i.e., depictions of how people interact
with arrangements of objects. We collect a dataset with observa-
tions of people performing everyday actions in reconstructed 3D
rooms. From this data, we learn prototypical interaction graphs
(PiGraphs), human-centric representations of interactions that link
attributes of the human pose with the geometry and layout of the
objects near the person. We show how PiGraphs can be used to
generate interaction snapshots given high-level specifications. We
evaluate the generated snapshots with ablative comparisons and a
user study judging plausibility against baseline approaches.

2 Related Work

The seminal work on affordances by Gibson [1977] has provided
inspiration for leveraging human-object interaction data in a vari-
ety of tasks, including the improvement of pose estimation, object
recognition, action classification, and many other problems [Stark
et al. 2008; Bohg et al. 2013; Koppula and Saxena 2013; Zheng
et al. 2014]. We aim to connect 3D environments and human poses
through a model of interactions with priors for both obtained from
RGB-D observation data.

Work in computer vision and robotics has jointly modeled common
human activities and interactions with objects observed in RGB-
D data [Koppula et al. 2013; Wei et al. 2013a; Wei et al. 2013b].
This line of work focuses on using a model of human activities
to classify objects and actions, or to predict likely sequences of ac-
tions given current observations. In contrast, we focus on generative
graphics applications. Another line of work encodes human inter-
actions from RGB-D data to hallucinate plausible human poses for
labeling objects or for learning priors on the spatial distribution of
objects with respect to people [Jiang et al. 2012; Jiang et al. 2013;
Jiang and Saxena 2013]. Grabner et al. [2011] focus specifically
on the action of “sitting” and sample scenes with posed 3D human
models to infer sittable objects. Other approaches in computer vi-
sion aim to learn pose predictions from RGB video [Delaitre et al.
2012], or to determine affordances in new images based on inferred
poses [Gupta et al. 2011; Fouhey et al. 2012].

Recent work uses RGB-D interaction observations to predict the
likelihood of actions in 3D scenes [Savva et al. 2014]. Our goal
is similar in the sense that we aim to extract human action priors
from RGB-D observation data. However, we focus on jointly mod-
eling both the human pose and arrangement of objects with which
it is interacting. In contrast, Savva et al. [2014] do not model pose
parameters or object arrangement. They address a discriminative
action labeling problem rather than a generative task.

Fisher et al. [2015] present an activity model for improved 3D scene

synthesis. The activity model is based on agent annotations contain-
ing position, orientation and action information. Along with a set
of manually annotated object interactions their method learns the
parameters of agent–object interaction scoring functions to evalu-
ate how well a given 3D scene supports specified activities. Most
importantly, they do not model or generate human poses.

An alternative approach for modeling 3D scene functionality is to
encode object–object features as presented by ICON [Hu et al.
2015]. Though object relations are critical for functional scenes,
we focus on joint analysis of human pose and object arrangements.
Combining priors from these two viewpoints is an interesting direc-
tion for future work.

Interaction snapshot generation is complementary to work in an-
imation synthesis—a broad field with much prior work. Guo et
al. [2014] provide a comprehensive survey. Data-driven methods
for modeling and synthesizing human motion are prevalent, with
the emphasis usually being in the temporal axis. Much prior work
has addressed modeling of human motion style to allow for high-
level control and adaptation of motion data [Grochow et al. 2004;
Shapiro 2011; Min and Chai 2012]. Some work has addressed
motion for concurrent object manipulation tasks [Bai et al. 2012],
though again the focus is in the temporal domain and not on com-
plex high-level constraints on object arrangements.

Prior work in animation captured interaction sequences on
“patches” representing common environment types and then syn-
thesized these sequences into longer behaviors [Lee et al. 2006].
This work shares our goal of correlating interactions with the geom-
etry of the environment. However, we take a complementary view,
as we predict and generate interaction keyframes satisfying high-
level constraints, instead of full animation sequences. More recent
work computes plausible, statically supported human poses given
the geometry of an environment as input [Kang and Lee 2014].
Both of these methods treat the environment as input and the poses
as output. In contrast, we jointly generate poses and environments.
We introduce a unified model for human-object interactions and
learn both pose and object interaction priors from RGB-D data.

3 Overview

Our goal is to automatically generate 3D depictions of interactions
by modeling how people interact with objects. We will encode ob-
servations gathered from the real world into probability distribu-
tions describing the human pose, nearby object categories, and their
contact, support or attention linkages to the pose, conditioned on
specific actions. To compactly aggregate these priors, we propose
the PiGraph representation: a human-centric graph-based represen-
tation that encodes objects and body parts as nodes, and interactions
between nodes as edges (see Section 5). In this section, we summa-
rize our approach and formalize the task that we will address.

3.1 Approach

We collect real-world observations to capture gaze and body part in-
teractions for learning the PiGraph representation. Manual specifi-
cation of pose priors, object arrangements, and constraints between
poses and objects is impractical: it requires an inordinate amount
of effort to cover the rich set of object configurations and poses that
human actions can exhibit. Furthermore, a data-driven approach
can be tailored to specific domains and is straightforward to scale.

We start by range scanning real-world environments using a dense
fusion approach from prior work [Nießner et al. 2013]. We then per-
form skeletal tracking of people as they interact with the scanned
environments, using a stationary RGB-D sensor [Shotton et al.



2013]. We ask a volunteer to annotate each recorded interaction
video with all time ranges where specific actions are taking place.
We encode these annotations as sets of verb-noun pairs (e.g., “sit-
chair”, “type-keyboard”—see Section 4). The 3D skeletal tracks
provide joint positions for the pose and are registered to the coordi-
nates of the environments, allowing us to create individual interac-
tion graphs (iGraphs, cf. PiGraphs which are prototypes aggregat-
ing a set of iGraphs). An iGraph’s nodes correspond to human body
joints or segments of geometry within the scene, and the edges are
specific observed contact or gaze events (see Section 5.1).

During learning, we aggregate iGraphs with the same action an-
notations to generate a PiGraph (see Section 6). These PiGraphs
encode the correlation between features of the geometry and the
observed human pose during the given action.

We then use the learned PiGraphs to generate interaction snapshots.
At a high level, we iteratively sample the probability distributions
of pose and object configuration, seeking to maximize an overall
interaction score. This score includes an object arrangement like-
lihood, a pose likelihood, and pose–object interaction likelihoods.
To do this, we define a similarity metric between pairs of iGraphs,
and between a PiGraph and an iGraph which we use to compute
interaction scores (see Section 7.4.3). We demonstrate that using
these metrics and the PiGraphs we can generate plausible interac-
tion snapshots from terse specifications.

We also demonstrate that the priors encoded in PiGraphs have var-
ious other applications. We use a standard NLP pipeline to convert
natural language input into action specifications thus creating an
end-to-end “text2interaction” system. We also show that PiGraphs
can be used to analyze 3D reconstructions by predicting object la-
bels and interaction regions. With these predictions, we generate
interaction snapshots constrained by the observed geometry in the
reconstruction, demonstrating a novel 3D scene modeling pipeline.

3.2 Task Definition

For interaction snapshot generation, we create a snapshot consist-
ing of a pose and a set of objects given an interaction as input.

More formally, our input is: (i) a corpus of 3D models with categor-
ical label ci for each model mi, and (ii) an interaction A given as a
set of verb-noun pairs. The output is a snapshot IS = (J,M) con-
sisting of a posed figure J , and a set of positioned objects M . We
represent M as a set of model instances, with M = {(mj , Tj)},
consisting of a model mj and its associated transform matrix Tj .

In Section 7, we generate interaction snapshots given an interaction
A as input. In Section 9, we show how interaction snapshots can
be generated directly from natural language text, or constrained to
match given 3D scene geometry.

In both cases, we must answer several questions:

1. How should the person be posed? We sample likely poses
from a pose distribution associated with each PiGraph.

2. Where can this action occur? This is given as input or pre-
dicted with the PiGraph for an input 3D scene.

3. What objects are nearby? Once we have posed and positioned
the person at a location, we use the PiGraph to predict likely
object categories.

4. Which body parts are interacting with objects? How are they
positioned relative to the object?

5. What is the placement and orientation of the objects? We re-
trieve and arrange 3D models to maximize an overall interac-
tion snapshot score LA(J,M).

stand-floor
+ write-whiteboard

lie-bed
sit-chair + look-monitor

+ type-keyboard

Figure 2: Interaction observation frames from our dataset. The
pose of the observed person is tracked and projected into the re-
constructed scene. The scene is annotated with object labels at the
voxel level (indicated by colors). Proximity of geometry to body
parts is used to create iGraphs used for learning the PiGraph of
each unique set of verb-noun annotations (labels at top).

We will first describe the data collection and annotation effort, and
then address the details of our representation and approach.

4 Dataset

The procedure used to collect our dataset is similar to prior work
on action map prediction [Savva et al. 2014]. We first obtain a 3D
reconstruction of an environment using a volumetric fusion frame-
work [Nießner et al. 2013]. We then set up a static Kinect.v2
RGB-D camera to observe people as they interact within these en-
vironments. In these interaction sequences, we track a person’s
skeleton at 30Hz using the Kinect SDK v2 framework [Shotton
et al. 2013]. The reconstructions are obtained using a Structure
sensor1. Once skeleton data was obtained, we projected all 3D joint
positions to the reconstructed scene coordinates, and asked a vol-
unteer to annotate each recorded video with all time ranges during
which specific actions were taking place (a set of appropriate verb
and noun labels was provided). Note that often multiple interac-
tions are annotated over a single time period (e.g., “sit-chair + read-
book”). Finally, we asked another student volunteer to annotate
all objects in the 3D scene reconstructions at the part level using
a predefined set of part labels (e.g., “chair:seat”, “chair:back”, “ta-
ble:top”). The segmentations were manually labeled by grouping
sets of segments obtained from an unsupervised normal-based seg-
mentation [Felzenszwalb and Huttenlocher 2004], and assigning an
object and part label to each group.

Our dataset is composed of 30 scenes and 63 observations. These
63 observations are video recordings of five subjects (4 male, 1
female) with skeletal tracking provided by the Kinect.v2 devices.
Tracking occurs within 3D scenes that were reconstructed using
the more mobile Structure sensors. The total recording duration is
about two hours (100k frames at 15Hz) with a per-recording aver-
age length of 2 minutes and an average of 4.9 action annotations. In
total, there are 298 actions, and the average action duration is 8.4 s.
There are 43 observed combinations of verb-noun pairs with 13
common action verbs such as look, sit, stand, lie, grasp, and read.
19 object categories are associated with these verbs (e.g., couch,
bed, keyboard, monitor). As Figure 2 illustrates, the observations in
our dataset are corresponded to volumetric reconstructions of each
3D scene with object annotations of all occupied voxels.

1http://structure.io/



Symbol Interpretation Type

j Body part joint
Person

J = {ji} Body pose

s Geometric segment

Geometry
sJ Active segment given pose J

SJ = {sJ} Active region given pose J

m 3D model mesh representing an object

a = (v, n) Action tuple (verb v, applied on noun n)

Concept
A = {ai} Performed activity as set of actions
IA = (VA, EA) Interaction graph (iGraph) for observed A

ĨA Prototypical interaction graph (PiGraph) of A

Table 1: Symbols used in our formalization.

5 Representation

Each observed interaction is represented as an interaction graph
(iGraph): a graph-based representation encoding human-object in-
teractions (see Section 5.1), which we then aggregate into proto-
typical interaction graphs we refer to as PiGraphs (see Section 5.2).
The PiGraph edges represent probability distributions of the spatial
relationships between an interacting joint and an object, as well as
the probability of the presence or absence of the interaction. The
pose of the person is represented using a hierarchical joint angle
encoding at each joint node (see Section 5.3).

Our goal is to have a representational model that is compositional,
interpretable, and generative. See Table 1 for a summary of sym-
bols in our formalization.

5.1 Interaction Graphs

We define an iGraph I = (V,E) consisting of the node and edge
sets V and E. Nodes represent either a joint of the human body ji
or a geometric segment si. The set of joints is the set used by the
Kinect.v2, visualized in Figure 3, and also includes an abstract cen-
ter of mass representing the body center, and an abstract gaze joint
representing the eyes. Body joints are connected through edges
representing the skeletal structure of the human body (j − j), and
joints are associated with specific segments through contact or gaze
linkage events (j − s).

Nodes in the graph represent regions of geometry a person is inter-
acting with, and specific body parts of the person. Nodes are at-
tributed with a continuous feature space representation of the prop-
erties of geometric regions or body parts. The edges are also at-
tributed with a feature vector that takes into account relative 3D
space positions and orientations of the linked nodes. We describe
how to extract iGraphs from observations in Section 6.1.

This representation allows us to encode the correlation between hu-
man pose and geometry while actions are performed. The pres-
ence of an edge associating a body part with an object indicates a
coupling between the two during an interaction. By looking at the
frequency statistics of such couplings we can construct priors on
what interactions are likely. We aggregate observations to create a
PiGraph representing each action type (see Section 5.2). Figure 3
shows an example of a observed interaction and how it is aggre-
gated to form a PiGraph.

Note that our goal is not to propose a new set of geometric or human
pose features. Instead, we use simple features that are easily inter-
pretable but capture important properties that are robust to noise in
the reconstructions and the tracked poses. Current passive sensor
technology has difficulty resolving joint positions more accurately
than∼ 10cm. Furthermore, we do not formulate any features based

Interaction

fc:h,r,...

fs:h,z,...

fj:dz

PiGraph

hips

gaze

torsohands

feet

floor

monitor

chair:seat

chair:back

keyboard
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Figure 3: Aggregation of iGraphs. Left: activated segments high-
lighted in boxes colored corresponding to body part. Right: fea-
tures of the segments and their linkage to a body part are computed
and aggregated into the nodes and edges of the PiGraph.

on appearance (i.e., RGB color) as our data does not sufficiently
capture the large variability over visual appearance (e.g., chairs can
have many different materials).

Features. We attach real-valued features on the nodes and edges
of iGraphs depending on the type of node or edge:

• Activation features fa: frequency of activation of node pairs
(stored at edges) and frequency of co-activation of body part
or object (at the nodes).

• Joint features fj : height above ground h.
• Segment features fs: centroid height above ground hc, seg-

ment bounding box height hs, horizontal diagonal length dxy ,
horizontal area Axy , and the dominant normal z vector (i.e.,
min-PCA axis)’s dot product with upwards vector.

• Contact features fc: absolute height of contact point h, radial
distance from skeletal center of mass to contact point on seg-
ment r, vertical displacement from center of mass to contact
point z, angle of vector from center of mass to contact point
in xy plane θxy , and the contact segment’s dominant normal
vector z dot product with direction of contact.

• Gaze features fg: same as contact features, except reference
point is head location instead of center of mass.

5.2 Prototypical Interaction Graphs

After encoding observed interactions as iGraphs, we aggregate
them into a prototypical interaction graph (PiGraph) for each ac-
tion (Section 6.2). Note that the set of action verbs associated with
each observation defines each class of PiGraph (e.g., sit prototype,
stand prototype, sit+type prototype, stand+type prototype).

PiGraphs aggregate the active geometry, the connectivity of geome-
try with pose, and the assigned noun references for each action. The
nodes contain distributions over the segment features and nouns.
The edges contain a connection probability (i.e., activation proba-
bility) and PDFs over the attributes of the connection.

5.3 Pose Representation

We use a hierarchical joint angle encoding to represent poses. The
input skeletal tracking data consists of the positions and orienta-
tions of 25 joints which we encode as quaternions and positions



relative to parent joints in the kinematic chain. In addition, we en-
code the global vertical orientation of the skeleton with respect to
the up vector. This is the same approach as used by Grochow et al.
[2004].We then convert the joint orientation quaternions into lati-
tude, longitude, and roll angles for which we fit von Mises distri-
butions [Mardia and Jupp 2009]. We also fit a normal distribution
to each bone length, normalized by total bone length for stability
across individuals. The von Mises distributions (for orientation an-
gles) and Gaussian distribution (for bone length ratio) at each joint
form a total pose distribution under which we evaluate the likeli-
hood of a given pose. We use this distribution to sample for likely
poses during snapshot generation. This representation allows us to
use a sampling scheme with one degree of freedom per joint (roll
angle around mean rotation axis) as we discuss in Section 7.3.

6 Learning from Observations

In order to learn a set of priors connecting features of the human
pose and geometry, we first extract iGraphs for each observed frame
of an interaction recording with an action annotation. Then, we ag-
gregate these iGraphs into a PiGraph for each unique set of verb-
noun pairs. Finally, we learn joint weights that indicate the impor-
tance of each joint for a particular action.

6.1 Extraction of Interaction Graphs

Given an action observationA with a person in a pose J , we extract
from the scene a set of active geometry segments sJ . These seg-
ments are activated either by contact (a joint of the pose is in close
proximity), or by gaze (the geometry is within the view cone).

Contact Activation. For each joint j ∈ J , we perform a nearest
neighbor lookup within a radius ract to find vertices of the recon-
structed scene mesh (we use ract = 10 cm for all results in this
paper). The segment si with the closest vertex within this threshold
is taken as an active segment for the specific joint ji.

Gaze Activation. We estimate the gaze direction from a skele-
tal pose J by a least squares plane fit to the body joints within the
torso (shoulders, spine, hips). We then take the two possible normal
vectors and vote on the “front” orientation by counting the number
of mobile joints (hands, elbows, knees, feet) that have a positive
dot product with each direction. The direction which gives more
positive dot products is chosen as front. We then randomly cast
N = 200 gaze rays from the center of the head in a 45◦ view
cone. For segments intersected within a maximum distance of 2m,
we accumulate a distance-weighted intersection count. This is the
product of ray intersection ratio (intersection count normalized by
total intersections), and the average distance to intersection (nor-
malized by maximum intersection distance). We sort segments by
this weight, and mark the top three as activated by gaze. This ap-
proach can have false positives when big vertical surfaces such as
walls are behind smaller surfaces of attention such as monitors. A
more robust approach could assign weights to the rays correspond-
ing to the salience of the given gaze direction, potentially condi-
tioned on the parameters of the observed pose.

Graph Construction. Once we have the set of active segments
{si}, we can create an iGraph for the observed action A. Each
joint ji in the pose J is represented by a node populated with joint
features. Joint nodes are connected by edges representing the struc-
ture of the human pose (i.e., bones between joint pairs) which con-
tain the relative pose features (such as vertical distance between
the joints in the pair). The active segments {si} are connected to

joints with which they maintain contact or gaze associations. Seg-
ment nodes are populated with segment features, and the contact
and gaze edges contain contact and gaze features respectively. Fig-
ure 3 shows an example observation and corresponding PiGraph.

6.2 Aggregating iGraphs into PiGraphs

A PiGraph ĨA captures the connectivity (activation) frequencies
and distributions over the features observed at the nodes and edges
of all iGraphs IA in a given action set A. In other words, ĨA forms
a joint probability distribution summarizing the observed IA and
their features. The process of constructing the PiGraph leverages
the fixed structure of the joints and bones across all IA in order to
correspond the observed active segments and their connections.

Initialization. We instantiate a new ĨA by constructing a graph
containing just the joint nodes ji and corresponding bone edges.
All edges are initialized with a frequency count which aggregates
the number of observations IA for which that edge holds. Both
edges and nodes are initialized with an empty set of histograms
over the features that they contain as members of iGraph IA. Nodes
and edges that are members of the pose (i.e., joint nodes and bone
edges) contain a single histogram. Nodes and edges that represent
events and geometry are linked to a set of histograms conditioned
on the noun n of the active geometry segment which is observed.
This set of histograms conditioned on n will represent the condi-
tional distribution over the segment features and contact or gaze
features for each type of segment n. For generality we used his-
tograms as a non-parametric representation, though other choices
such as kernel density estimation or fitting parametric models can
better capture specific distributions.

Aggregation. For each iGraph IA within an action set A, we ag-
gregate the observed features into the PiGraph ĨA as follows. The
features of each joint node in IA are added into a feature histogram
at the corresponding joint node in ĨA. Likewise, the features over
each bone edge in IA are added to a histogram in the correspond-
ing edge in ĨA. In the case of contact or gaze linkage nodes and
edges in IA, we aggregate the observed features in the appropriate
histogram under the segment label n.

Joint Weights. We define a per-joint weight by taking the con-
ditional probability of a joint being linked to geometry segments
corresponding to a verb target (see Figure 4). These weights re-
flect strong correlations between different verb-joint pairs such as
“stand” and feet, “sit” and hips, and “look” and gaze. Figure 5
shows the differences in joint weights for different sit poses. For
instance, the model learns that “sit chair” and “sit couch” will acti-
vate the back, while “sit-stool” and “sit-bed” typically do not.

While this method works for well-represented actions, it can fail
due to insufficient observations. For instance, we were unable to
learn any weights for rare actions such as “grasp” and “switch”.
The poor sensor resolution at the scales of these interactions made
it difficult to detect the correct interacting object.

6.3 Encoding Human Pose Distributions

As described in Section 5, we represent poses as von Mises and
Gaussian distributions at each joint. Each joint orientation is de-
fined relative to its kinematic parent joint thus implicitly encoding
relations along the kinematic chain. Because the dependency be-
tween child and parent joint is captured by the parameterization, we



sit stand type read look lie down write

Figure 4: Top: maximum likelihood poses for aggregated skeleton distributions of some action verbs. Bottom: conditional probabilities
of body part interaction with objects during each action (indicated as red saturation). Parts critical to each action have high interaction
probability. The somewhat atypical “write” pose is due to all our observations of writing being “writing on whiteboard” interactions.

sit-chair sit-couch sit-stool sit-bed

Figure 5: Comparison of body part interaction weights and in-
teraction volume priors for sitting on different types of objects.
Top: torso interaction weight decreases from left to right while hip
weight is high overall. Bottom: height and density of the hand inter-
action (orange voxels) shifts due to the different object categories.

assume that joints are independent of one another during learning.
This allows us to learn the distribution of each joint independently.

Parameter estimation, evaluation, and sampling for von Mises and
Gaussian distributions are straightforward to do analytically. The
exception is estimating the concentration κ for von Mises distribu-
tions, which we approximate using the approach of Sra [2012].

Though this model may not capture the full richness of general hu-
man motion, it is appropriate for our data of common, largely static
activities exhibiting little motion around a mean pose. Much prior
work has looked into more advanced models that can better capture
a broader range of motions.

After learning a set of PiGraphs from our dataset, we can address
the interaction snapshot generation algorithm.

7 Generating Interaction Snapshots

Figure 6 provides a summary of the process used to generate inter-
action snapshots given a set of action specifications. First, the input
specifications are used to retrieve the corresponding PiGraph. The
set of objects is expanded using the PiGraph and then their con-
tact and gaze linkage with the pose and their support relation with
each other are inferred. Then, a set of 3D models with category
labels matching the objects is retrieved, and a pose is sampled from
the distribution of the PiGraph. The interaction volume priors of
the action verbs composing the active PiGraph are now used along

with the pose distribution to iteratively score object placements and
poses, and optimize for the joint likelihood of the pose and object
arrangement under the PiGraph.

We follow a simple sampling approach at each step, alternating be-
tween sampling a pose with the object arrangement fixed, and sam-
pling new object placements with the pose fixed. At each step the
pose and object arrangement likelihood are scored using the pose
distribution and object priors of the PiGraph correspondingly. Mod-
els are retrieved and placed in order of support hierarchy from sup-
porting objects to supported objects, and from largest to smallest.
We then sample parameters for object support surfaces, positions,
orientations, and pose joint angles. Each sample is scored accord-
ing to the distributions encoded in the PiGraph nodes and edges.

Since our interaction snapshots consist of a few key objects, a sim-
ple sampling approach can give reasonable results. For more com-
plex scenes, advanced sampling techniques such as Hamiltonian
Monte Carlo or other varieties of Monte Carlo sampling would be
helpful. With such approaches we can handle more complex joint
distributions, which is by itself a challenging research problem.

We describe the snapshot generation steps in the following sections.

7.1 Interaction Graph and Support Prediction

To infer an iGraph, we take the set of verb-noun tuples and deter-
mine the set of objects and their interacting joints. In addition, we
infer a support hierarchy for the objects, and a supporting object for
the person. The iGraph provides the basic constraints on the objects
that need to be present, and the positioning of objects with respect
to the person, while the support hierarchy provides constraints on
the placement of objects with respect to each other. The support
hierarchy also provides a natural ordering for placing objects (sup-
porting parents are placed before supported children objects).

Interaction Links. Given the PiGraph ĨA, we predict likely in-
teracting object categories by looking at the probability Pobs(c|j)
that an object of category c is interacting with joint j. We estimate
Pobs(c|j) = wc, where wc is the fraction of time a segment with
label c is observed interacting with joint j for the given action A.

We make the following simplifying assumptions: 1) each joint is
interacting with at most one object, and 2) there is at most one ob-
ject of each category in the interaction. The first assumption al-
lows us to select just one object per joint and we choose the most
likely category. The second assumption allows us to avoid issues of
coreference (i.e., person’s arm and hip both interacting with a chair
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arrangement to optimize likelihood under PiGraph and generate final interaction snapshot.

could mean two chairs or one chair). We also filter out categories
with probability less than τ = 0.05 to avoid spurious interactions.

Support Hierarchy. We use a static support hierarchy for placing
objects. Following Fisher et al. [2012], we obtain a set of sup-
port priors P (cp|cc) between object categories from the synthetic
3D scene data in that work. Using these support priors, we create
a support hierarchy by identifying the most likely support parent
category c∗p. We also identify the support object for the pose and
objects supported by the pose. We classify the pose as “standing”
or “not standing” by assuming that a vertical displacement between
knees and hips greater than half the average calf length is an indi-
cator for standing. If the person is “not standing”, we use the object
interacting with the hip as the support object.

While building the support hierarchy, we may encounter object cat-
egories, c∗p, not originally identified as part of the interaction. For
each such c∗p, we add it to the set of interacting object categories
and retrieve appropriate models. If we cannot retrieve a parent sup-
port object, but the object is normally supported, we assume that it
is supported by the interacting joint (e.g., books held for reading).

7.2 Model Retrieval and Object Placement

Once we identify the set of objects that are present, we select ap-
propriate 3D models to represent the objects. For an object with
category c, we retrieve a random model matching the category c.
We use the categorized 3D model database of Fisher et al. [2012].
We directly retrieve models by category. A more sophisticated ap-
proach could use the learned interaction priors to help retrieve more
relevant models through size and interaction surface area heuristics.

Placement order. The object supporting the skeleton is placed
first at the same position as the skeleton, and oriented so it faces the
same direction as the skeleton. Other objects are placed by travers-
ing the support hierarchy upwards.

Sampling. To identify good placement candidates for an object,
we sample the upwards oriented horizontal support surfaces on the
support parent and maximize the probability given the distance of
the point to the interacting joints. These objects are oriented by
having them face towards the person.

7.3 Generating Poses

We sample likely poses from the pose distribution associated with
a given PiGraph. To reduce the parameter space we always take the
mean bone length and mean latitude–longitude angles. The former
has the effect of generating a person of average height, while the
latter fixes the rotation axis of each joint orientation to the mean
orientation axis of that joint in spherical coordinates. The remain-
ing roll angle can be sampled to determine the full joint orienta-
tion. This simplification fixes all joints to one degree of freedom
which is a strong restriction. However, this is a simple approach
for exploring a high-likelihood region of the pose distribution and
sufficient for our purposes. Estimating and sampling of more pow-
erful models such as the Scaled Gaussian Process Latent Variable
Model presented by Grochow et al. [2004] is a natural extension to
the simple approach we have taken.

Note that we do not use any inverse kinematics or static support
reasoning to refine the pose. Sampling pose parameters from the
PiGraphs directly gives the results. This direct sampling captures
representative poses and variations that obey key contact and gaze
constraints for each action. Combining this sampling approach with
pose stability and IK methods can improve the quality of the results.
Our focus in this work is to show that combining priors on object ar-
rangement and pose is a surprisingly effective yet simple approach
for encoding common human poses.

7.4 Scoring

The overall score LA(J,M) of an interaction snapshot is the com-
bination of the pose, object, and interaction scores. We compute
LA(J,M) as the weighted sum of pose score LpA(J), object
placement score Lo(M) and an interaction score LiA(J,M):

LA(J,M) = wpLpA(J) + woLo(M) + wiLiA(J,M)

7.4.1 Pose Score

We compute the pose score LpA(J) as the sum of log probabilities
for each joint orientation and a self collision avoidance energy term:

LpA(J) =
∑
i

Vi(ji)− C(J) ,

where Vi is the log likelihood function for the von Mises distri-
bution at joint ji and C(J) is a [0, 1] normalized measure of self
collision evaluated by point sampling the oriented bounding box of



each bone and checking how many points are contained by other
bones (a cross section radius of 10 cm is used for all bones except
the torso which has a radius of 15 cm).

7.4.2 Object Placement Score

Given the constraints of the joint interactions and the simplicity of
the interaction snapshots, we use a simple object placement energy
term that penalizes collisions and rewards support:

Lo(M) =
∑

mi,mj ,j �=i

(1− C(mi,mj))

It is possible to use a more advanced object placement score that
takes into account the likely position of objects which may be useful
for more complex interactions with many objects.

7.4.3 Interaction Score

We define the interaction score LiA to be the similarity of a given
iGraph I corresponding to the pose J and object configuration M ,
with the PiGraph ĨA:

LiA(J,M) = sim(I, ĨA)

To define sim(I, ĨA), we first define the similarity between two
iGraphs I and I ′ as a weighted combination of a gaze similarity
simgaze and an overall contact similarity simacon :

sim(I, I ′) = wgazesimgaze + waconsimacon

The gaze similarity includes the similarity between the gazed
segment features, and the gaze edge features: simgaze =
max(s,s′)(sim(fs, f

′
s)× sim(fe, f

′
e)) where s is a gazed segment

in I and e is the gaze edge for s. For node and edge feature similar-
ity we use the [0, 1] angular similarity of the feature vectors.

Similarly, we define for each joint j a per-joint contact similar-
ity simconj = max(s,s′)(sim(fs, f

′
s) × sim(fe, f

′
e)) where s

is now a contacted segment and e is the contact edge. We ag-
gregate across all joints with contacts to obtain the aggregated
simacon =

∑
j∈J simconj .

We set the contact and gaze weights to be equal, though tuning
them for specific prediction or classification tasks is an interesting
direction to explore in future work.

Similarity of PiGraphs and iGraphs. In order to compute the
similarity of an iGraph IJ,SJ to a PiGraph ĨA, we use the probabil-
ity that a feature vector f from IJ,SJ is drawn from an aggregated
histogram hist of ĨA: simhist(f) = Phist(f).

8 Results

We start by visualizing several aspects of the priors encoded in
the PiGraph representation. This allows us to verify empirically
that common sense facts are captured by the representation and is
also a good sanity check decoupled from the quality of interaction
snapshots. We then quantitatively evaluate the results of interaction
snapshot generation with a human judgment study.

8.1 Visualizing Interactions

The learned PiGraphs can be used to evaluate the likelihood of new
interaction graphs under the observed distributions for a given ac-
tion A. The priors on the expected geometry of interacting objects,
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0.00.2 0.4 0.60.8
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Hand-keyboard

Figure 7: Normalized histograms of contact height and contact
radial distance from pose center of mass for several joint-object
pairs. Note the natural ordering of chair seat, table top, chair back
in ascending contact height, and the ordering of chair seat, table
top, keyboard in increasing radial distance.

lie-bed sit-bed + use-laptop

sit-chair + use-laptop look-whiteboard

Figure 8: Interaction snapshots generated by sampling PiGraphs
learned from various action observations.

and their linkage to the human pose are encoded in normalized his-
tograms such as the examples plotted in Figure 7.

In addition to these histogram priors, we can also visualize priors on
the occupancy of space surrounding the pose of a person during an
interaction by projecting all observations of interacting object sur-
faces in the pose-centric coordinate frame and aggregating counts
into a dense voxel grid. Figure 9 shows several examples of these
“interaction volume” constructions which capture common sense
facts involving body part contact and attention.

8.2 Generated Interaction Snapshots

Figure 8 shows several examples of generated interaction snap-
shots. The input to each of these is the indicated set of verb-noun
pairs. Overall, the generated interaction snapshots capture many
relations between the human pose and objects that would have to
be manually specified: positioning of hips on the sittable surfaces
of chairs and beds, and the orientation and limb configuration of
the pose for looking at and using laptops and whiteboards. More
examples of interaction snapshots are provided in Figure 1.

8.3 Evaluation

To quantitatively evaluate the generated interaction snapshots, we
perform a human judgment study. We establish a baseline condition
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stated and represented facts about human pose–geometry coupling. For example: looking means gazing at geometry in front of one’s head;
when sitting in chairs there is usually a backrest part behind the torso, in contrast to sitting in bed and sitting on a stool.
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Figure 10: Rating distributions for the interaction snapshot qual-
ity study (higher is better, 2072 judgments across conditions). The
naive baseline performs worst as expected. Using the average pose
instead of sampling and scoring poses results in a lower perceived
quality. This illustrates the benefit of the pose priors.

by using the PiGraph to only predict the objects and their support
hierarchy. We then position these objects independent of the pose.
We also tested a simplified version of our approach which always
uses the average pose for each PiGraph and thus completely skips
pose sampling. For each of these conditions, and the full method,
we generated 5 interaction snapshots from 37 PiGraphs learned us-
ing our training dataset.

We then recruited 75 participants on Amazon Mechanical Turk to
judge the quality of the interaction snapshots. Participants were pre-
sented with screenshots of interaction snapshots chosen at random
from among the conditions, along with the input verb-noun action
specification. They were asked to provide a rating on a 1-7 Likert
scale indicating how well the scene matched the given description
(1 for “very poorly” and 7 for “very well”). Participants were in-
structed to focus on whether the scene depicts the specified interac-
tions, whether all stated objects are present, and whether there are

artifacts such as collisions or unusual object positions.

We collected 2072 judgments for the 555 stimuli screenshots (37
PiGraphs, 5 snapshots, 3 conditions, 3.7 ratings per stimulus on av-
erage). The rating distributions for each condition are plotted in
Figure 10. As expected, the naive baseline has the lowest score (av-
erage of 3.09), the simplified method with average poses is higher
(3.79), and the full method has the highest average rating (3.92).

8.4 Retargeting for Novel Interactions

Using the learned PiGraphs we can generate novel interactions for
verb-noun pairs not observed in the training data (see Figure 11).
To generate these, we aggregate the PiGraphs corresponding to all
possible verb targets. We then take the joint probabilities and fea-
tures associated with these that were previously observed, and use
them with the new verb noun pair.

8.5 Limitations

Though the generated snapshots produce good results for a variety
of input actions, our approach has important limitations and failure
cases. Our sampling scheme fails to sample good configurations
when the initial parameters are not ideal. For example, if the first
object in an interaction (e.g., a table) is badly positioned behind the
pose, recovery is difficult. More advanced sampling methods can
help mitigate this limitation. The most significant limitation of our
approach is the restriction to static scenes.

We have chosen not to model any of the dynamics or temporal se-
quencing of interactions primarily due to the difficulty of tracking
people interacting with dynamic scene geometry. The quality of
the reconstructed geometry and tracked poses is limited by the res-
olution of the commodity range sensors we used. This makes it
difficult to address interactions with smaller objects below the sen-
sor resolution, such as with mugs or pens. Improvements in sensor
technology will help to alleviate this problem. Finally, our current
implementation uses simple geometric features and makes simpli-
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Figure 11: Interaction snapshots for novel verb-noun combinations
that were not observed in the training data. These snapshots show
how a PiGraph aggregated for a given action verb can be sampled
for posing against novel object categories. The bottom right ex-
ample illustrates a failure case where the attempt to “look” at the
chair clashes with the more common action of sitting on the chair.

fying assumptions for building the pose and object configuration
priors. We believe that more powerful models requiring fewer as-
sumptions and using more robust geometric features will improve
the quality of the learned interaction priors.

9 Applications

9.1 Text2Interaction

We can use our method to generate interaction snapshots directly
from text. Using the Stanford CoreNLP pipeline [Manning et al.
2014], we analyze the input text, extract verb-noun pairs, and pro-
vide them as input to our method. This is a rudimentary approach
that does not handle synonymy and complex patterns—more ad-
vanced NLP techniques can be used to map a sentence to a set of
canonicalized verb-noun pairs. Alternatively, with more data we
can learn PiGraphs of finer granularity that can correspond to dif-
ferent verbs (e.g., subtle variations of sit such as “lounge”). Fig-
ure 12 shows example natural language descriptions and the cor-
responding generated interaction snapshots. Our method can be
incorporated into text-to-scene systems such as WordsEye [Coyne
and Sproat 2001] or Chang et al. [2014]’s system for automatic gen-
eration of interactions without the need for manually defined object
interaction annotation tags, which require significant manual effort.

9.2 3D Scene Analysis with Constrained Snapshots

The PiGraph representation provides a novel way to analyze 3D
reconstructions of real-world environments. By densely sampling
positions in the scene and evaluating the support for the PiGraph at
each position, we can find a high likelihood location for the given
interaction. Examples are shown in Figure 13 as saturated green
heatmaps over the scene geometry. After the position is determined,
we anchor the PiGraph at the maximal likelihood position and use
the object arrangement priors to predict the identity of nearby vox-
els (cf. ground truth voxel annotations). The predicted voxels are
then used as an additional term in the interaction snapshot genera-
tion, constraining the resulting object arrangement to overlap with

Figure 12: Output scenes with posed virtual characters for natural
language text input: “He is sitting in the couch” (top left), “He
is watching TV and resting his feet on a stool” (top right), “He is
sitting in bed and using a laptop” (bottom left), and “He is sitting
on a couch and reading a book”. The text is parsed into verb-noun
pairs to generate interaction snapshots with approriate PiGraphs.

the scanned scene. Modeling interactions is a promising avenue for
research in scene reconstruction and 3D model retrieval.

10 Conclusion

We introduced the PiGraph representation to connect geometry and
human poses during static interactions. We showed that PiGraphs
can be learned from RGB-D data and used to generate a variety
of interaction snapshots. There are many use cases for interaction
snapshots. For instance, using snapshots as automatically generated
keyframes for storyboarding animations, or as efficient high-level
primitives in 3D scene modeling, or for augmented reality inter-
faces driven by natural language.

We presented a new framework for jointly modeling human pose
and object arrangements during common interactions. Our method
offers a novel view of geometry through the lens of interactions.
Our hope is that by augmenting geometry with probabilistic models
of human interaction, such as the PiGraphs, we can help to answer
the fundamental questions of “where”, “what”, “how” and “when”
that are necessary for 3D scene understanding. In our results, we
demonstrated that interaction snapshots can be generated for both
unconstrained scenarios, and for matching given scene geometry.
We believe that interaction snapshots can form a building block for
automating more advanced models of human interactions. An in-
teresting line for future work would be in combining multiple inter-
action snapshots for animation by supporting temporal sequencing
and multiple agents in 3D environments.
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