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Figure 1: In our method, a subdivision surface model (left) is rendered in a single pass, without a separate subdivision step. Each quad face
is submitted as a single tessellated primitive; a per-face adaptive quadtree is used to map tessellated vertices to the appropriate subdivided
face (middle). Our approach makes tessellated subdivision surfaces easy to integrate into modern video game rendering (right). c© 2014
Activision Publishing, Inc.

Abstract

We present a novel method for real-time rendering of subdivision
surfaces whose goal is to make subdivision faces as easy to ren-
der as triangles, points, or lines. Our approach uses standard GPU
tessellation hardware and processes each face of a base mesh inde-
pendently, thus allowing an entire model to be rendered in a single
pass. The key idea of our method is to subdivide the u, v domain of
each face ahead of time, generating a quadtree structure, and then
submit one tessellated primitive per input face. By traversing the
quadtree for each post-tessellation vertex, we are able to accurately
and efficiently evaluate the limit surface. Our method yields a more
uniform tessellation of the surface, and faster rendering, as fewer
primitives are submitted. We evaluate our method on a variety of
assets, and realize performance that can be three times faster than
state-of-the-art approaches. In addition, our streaming formulation
makes it easier to integrate subdivision surfaces into applications
and shader code written for polygonal models. We illustrate inte-
gration of our technique into a full-featured video game engine.
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1 Introduction

Subdivision surfaces [Catmull and Clark 1978; Loop 1987; Doo
and Sabin 1978] have been used in movie productions for many
years. They have evolved into a de facto industry standard sur-
face representation, due to the flexibility they provide in modeling.
With an increasing demand for richer images with more and more
visual detail, it is desirable to render such movie-quality assets in
real time, enabling the use of subdivision surfaces in both content
creation tools and interactive video games. Ideally, we would like
subdivision surfaces to be supported as first-class rendering primi-
tives on GPUs, akin to points, lines, and triangles.

Modern graphics hardware and APIs support tessellation of para-
metric surfaces, as part of the standard graphics pipeline [Microsoft
Corporation 2009]. Tessellation hardware takes as input individual
parametric patches of statically-known size, and uses a user-defined
shader to directly evaluate their surface at arbitrary locations in each
patch’s domain. The evaluated vertices are connected into trian-
gles, and processed by the subsequent graphics pipeline stages. An
application can vary the sampling rate to achieve view-dependent
level-of-detail. Because data expansion is done locally, memory
I/O is kept low and high throughput can be achieved.

Unfortunately, hardware tessellation only supports directly-
evaluable parametric surfaces, and direct evaluation of subdivision
surfaces can be expensive. In the case of Catmull-Clark subdivi-
sion [1978], the limit surface for a regular face can be evaluated as
a bi-cubic B-spline patch. However, the limit surface for an irregu-
lar face is defined by iterative application of the subdivision rules.
Seminal work by Jos Stam [1998] has shown that the limit surface
for an irregular quadrilateral face can also be directly evaluated by
doing Eigenanalysis of the underlying subdivision matrix. How-
ever, Eigenanalysis-based evaluation involves many floating-point
operations, making direct evaluation with Stam’s method costly.

Given the complexity of direct evaluation, most fast rendering
schemes use either approximation or adaptive subdivision. Approx-
imating schemes [Loop and Schaefer 2008; Loop et al. 2009] render

http://dx.doi.org/10.1145/2897824.2925874


(a) FAS (b) Ours

Figure 2: In order to isolate an extraordinary vertex, FAS subdi-
vides a face into multiple primitives, including transition patches
(green) to stitch T-junctions. Our algorithm uses a single primitive
per quad face, with a precomputed internal hierarchy.

each face of the subdivision surface as a directly-evaluable patch
that approximates the limit surface. This can yield high perfor-
mance, but does not reflect the true Catmull-Clark surface. Open-
Subdiv1, a widely-used library for rendering subdivision surfaces,
uses Feature-Adaptive Subdivision (FAS) [Nießner et al. 2012a].
Irregular faces, and those with special features, are subdivided to
yield multiple patches that can be directly processed by tessellation
hardware, while yielding an accurate surface.

Compared to approximate schemes, FAS has several disadvantages.
First, each irregular input face maps to multiple tessellator input
primitives (Figure 2), the number of which correlates with the sub-
division level at run time. This complicates the application logic
used to assign tessellation rates and submit primitives, compared
to approximation schemes that use a single primitive per input
face. Second, where faces with different subdivision levels meet, T-
junctions occur, which must be fixed with the introduction of transi-
tion patches. Third, the adaptive subdivision and patch tessellation
steps are implemented as distinct compute and rendering passes,
punctuated by global synchronization. Using FAS, subdivision sur-
faces are not integrated into the rasterization pipeline, and do not
combine in an orthogonal fashion with typical vertex shader steps,
such as skeletal animation. Finally, FAS, and transition patches in
particular, can make the distribution of vertices on the tessellated
limit surface less uniform (Figure 3), making it hard to avoid sur-
face over- or under-sampling.

In this paper, we propose a novel end-to-end subdivision algorithm
that allows us to incorporate subdivision surface tessellation into
the graphics pipeline, just like other primitive types. The key in-
sight of our method is to submit one tessellator primitive per input
quadrilateral face, as in approximate schemes, but to pre-compute
sufficient data to perform accurate surface evaluations equivalent to
FAS. A per-face subdivision plan, generated ahead of time, uses a
quadtree acceleration structure to record the adaptive subdivision
hierarchy that arises from an input face. By traversing the quadtree,
we can map the u, v location of a tessellation vertex to a directly-
evaluable patch in the subdivision hierarchy. The subdivision plan
also allows us to compute the subdivided control points required
for given tessellation factors per-patch, within the existing graph-
ics pipeline. Compared to the state of the art, our approach is both
simpler and faster, and integrates with existing vertex and fragment
shaders used for polygonal models.

Our main contribution is an end-to-end subdivision surface render-
ing pipeline, including the following key aspects:

• a novel method to render subdivision surface models (in-
cluding boundaries, semi-sharp creases, and non-quadrilateral
faces) in a single pass on GPU hardware

• significantly increased performance compared to state-of-the-
art renderers; up to 3× speedup for typical tessellation rates

1http://graphics.pixar.com/opensubdiv
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Figure 3: Comparison of tessellation pattern quality between FAS
and our approach. Our tessellation density is more uniform due to
our one-to-one mapping between submitted and rendered faces.

• extension of our method to aggregate multiple faces into a
single tessellation primitive, to further accelerate rendering

• support for easily adding/removing faces and changing topol-
ogy at runtime, since faces are processed independently

• proposed GPU features to further accelerate our approach

We also demonstrate integration of our approach into a production
game engine.

2 Previous Work
Subdivision surfaces generalize parametric patches to arbitrary do-
mains. Catmull-Clark surfaces [Catmull and Clark 1978], a gen-
eralization of bi-cubic B-splines, are the most prominent of sub-
division schemes; however, many other schemes exist, such as
Loop [Loop 1987], Doo-Sabin [Doo and Sabin 1978], and
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subdivision [Kobbelt 2000]. Since the introduction of subdivision
surfaces, several important extensions have been proposed, includ-
ing the handling of boundaries [Nasri 1987], infinitely sharp creases
[Hoppe et al. 1994], semi-sharp creases [DeRose et al. 1998], and
hierarchically-defined detail [Forsey and Bartels 1988]. Subdivi-
sion surfaces have been the method of choice for movie production
due to the flexibility they afford in modeling [Cook et al. 1987;
Pixar Animation Studios 2005]. More recently, efforts have been
made to render subdivision surfaces in real time on graphics hard-
ware, for use in authoring tools and video games.

A naive way of rendering subdivision surfaces on GPUs is via
global refinement; i.e., a GPU kernel iteratively applies the sub-
division rules and generates a densely-refined mesh, which is then
rendered in a second pass [Bunnell 2005; Shiue et al. 2005; Patney
et al. 2009; Weber et al. 2015]. Unfortunately, global refinement re-
quires significant memory bandwidth to stream mesh data between
GPU multiprocessors and global memory (i.e., on- and off-chip).

Hardware tessellation can alleviate this bandwidth problem [An-
drews and Baker 2006; Microsoft Corporation 2009], since tes-
sellated geometry can be generated and consumed on-chip. Re-
cent surveys [Schäfer et al. 2014; Nießner et al. 2015] provide a
comprehensive overview of rendering techniques with the hardware
tessellator. The challenge of rendering subdivision surfaces using
the hardware tessellator is patching the base mesh: i.e., converting
the faces of the base mesh into some number of directly-evaluable
parametric patches. Jos Stam [1998] shows that direct evaluation of
subdivision surfaces is possible; while originally presented on the
CPU, a GPU implementation is straightforward. However, Stam’s
method requires many floating point computations (transformation
to Eigenspace of the subdivision matrix) and is restricted to quad-
only meshes with isolated extraordinary vertices.

Bolz and Schröder [2002] propose a direct evaluation scheme which
pre-computes tabularized functions for particular topological con-
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figurations of faces. Because of the large size of the required tables
(linear in the number of vertices in the 1-ring, and quadratic in max-
imum sampling rate), they restrict their approach to a small range
of topologies, and isolate extraordinary vertices using global sub-
division. Our approach is similar in that we also accelerate surface
evaluation by pre-computing a data structure for each face configu-
ration. However, our quadtree data structure is more compact than
Bolz and Schröder’s tables, with size linear in maximum subdivi-
sion depth (logarithmic in maximum tessellation rate).

Approximate patching may be used to accelerate rendering. Loop
and Schaefer [2008] propose an approximate, quad-only scheme
using bi-cubic Bézier patches. Other quad-only patching schemes
can be applied to rendering with hardware tessellation [Myles et al.
2008b; Ni et al. 2008]. Myles et al. [2008a] propose a method to
support pentagonal patches as well as quads and triangles. The use
of Gregory patches allows Loop et al. [2009] to achieve both high
quality and performance for mixed quad-and-triangle meshes. Un-
fortunately, approximate patching can introduce distortions in the
parameter domain; with additional effort these artifacts can be mit-
igated [He et al. 2012]. Kovacs et al. [2009; 2010] handle infinitely
sharp creases in the context of an approximating scheme.

Approximate schemes are viable for some uses, but for others qual-
ity may be unsatisfactory, support for special features may be lack-
ing, or problems may arises with displacement mapping [Nießner
and Loop 2013]. Feature-adaptive subdivision (FAS) [Nießner et al.
2012a] avoids approximation and efficiently handles features such
as semi-sharp creases [Nießner et al. 2012b]. It achieves similar
performance to approximate schemes while producing accurate re-
sults, and is the basis for the widely-used OpenSubdiv library. FAS
applies subdivision only in regions where direct evaluation is costly
or infeasible, and processes regular faces as patches using the hard-
ware tessellator. Dynamic feature-adaptive subdivision (DFAS)
[Schäfer et al. 2015] extends FAS by allowing locally-adaptive sub-
division depths within a single mesh, which can be important for
large meshes. Our approach is similar to FAS and DFAS, but with
two key differences. First, while we also compute control points
for subdivided faces, we do not submit these faces to the tessella-
tion hardware; instead, we submit a single primitive for each base
face, and dynamically access the correct control points. Second,
rather than process a mesh globally, in multiple passes, we process
each base face independently, within the GPU rendering pipeline.

3 Overview

In this section, we outline the main steps of our approach; an
overview of the algorithm is shown in Figure 4. We begin with
a per-face preprocessing phase; once completed, we can render a
subdivision surface in a single pass on current GPU hardware.

Input As input, we take a Catmull-Clark base mesh, which is de-
fined by its topology, feature tags, and a set of base vertices. We
support all common extensions of Catmull-Clark subdivision, in-
cluding boundaries and both hard and semi-sharp crease tags on
vertices and edges [Hoppe et al. 1994; DeRose et al. 1998]. We
do not require that extraordinary vertices be isolated, and support
meshes with arbitrary non-quad faces without additional prepro-
cessing. We also do not require the topology of a mesh to remain
fixed at runtime (including the tagging and sharpness of features).
Dynamic updates are feasible on a per-patch level since each quad-
face is processed independently; this is important for authoring
tools, where the mesh topology may be modified frequently.

In this section, we only discuss quad faces, and defer discussion
of how we handle non-quad faces to Section 7.2. In addition, we
propose extensions that can aggregate multiple faces in Section 7.3.

Figure 4: Overview of our algorithm. We preprocess each face
of a base mesh to yield a subdivision plan, comprising a quadtree
of sub-faces, and stencils for the control points they require. At
runtime, we set up the face by computing the subset of control points
required for a given tessellation factor, and then use the quadtree
to guide evaluation at each surface sample.

Creating a Subdivision Plan When a base mesh is first loaded,
we process each face (and its 1-ring neighborhood) to create (or
reuse) a subdivision plan. The subdivision plan is a data structure
that represents a feature-adaptive subdivision hierarchy for the face,
down to some fixed maximum depth. Specifically, it comprises:

• a quadtree of the adaptive subdivision hierarchy of the face

• an ordered list of stencils for control points required by sub-
divided faces. Each stencil represents a control point as a
weighted sum over base vertices in the 1-ring of the face.

Quadtree leaf nodes represent directly-evaluable sub-regions of the
parameter domain, with control points in the list of stencils.

Plans can be shared by faces with equivalent topological configura-
tion. We describe the creation, structure, and sharing of subdivision
plans in more detail in Section 4.

Face Setup and Subdivision For rendering, we submit one
primitive to the hardware tessellator for each quad face of the base
mesh, irrespective of regularity, special features, or valence. This
single primitive may represent a hierarchy of adaptively-subdivided
faces, each with their own control points.

The setup and subdivision stage is responsible for computing the
control points required at runtime; this stage maps well to the hard-
ware hull shader. First, an application-specific metric (screen-space
or other) is used to compute desired tessellation factors, which de-
termine the level of adaptive subdivision to be applied. Then the
control points required at the selected subdivision level are com-
puted by applying the corresponding stencils.

We describe face setup and subdivision further in Section 5.

Surface Evaluation The hardware tessellator produces a set of
tessellation vertices, each associated with a parametric location
within the u, v domain of the face. Our surface evaluation step
computes position and tangents of the limit surface at each of these
locations. Surface evaluation maps to the hardware domain shader.



Evaluation traverses the quadtree in the subdivision plan to find the
directly-evaluable sub-face in which the u, v location lands. In the
common case, this is a regular sub-face, which is evaluated as a B-
spline surface, using control points output by the subdivision stage.

We describe the surface evaluation step further in Section 6.

4 Creating a Subdivision Plan

Central to our algorithm is the subdivision plan data structure which
we create for base mesh faces. Creating a subdivision plan for a face
begins with adaptively subdividing the face, in a manner similar
to FAS. Subdivision yields a hierarchy of sub-faces, encoded as a
quadtree, and a list of stencils for control points.

Adaptive subdivision terminates at faces that can be directly eval-
uated (e.g., regular faces), or upon reaching a predefined limit on
subdivision depth. This limit is a function of the maximum tessel-
lation factor. Current GPUs support factors up to 64 (six levels).

4.1 Constructing an Adaptive Subdivision Quadtree

Figure 5: Quadtree for a face with two extraordinary vertices, and
one semi-sharp edge. The quadtree comprises internal (I), regular
(R), and terminal nodes (T). Our terminal nodes do not support
direct semi-sharp crease evaluation, so the bottom-right quadrant
is recursively subdivided until the sharp feature is eliminated.

Our quadtree (Figure 5) directly reflects an adaptive subdivision of
the face. Internal nodes correspond to recursive subdivision steps,
and leaf nodes correspond to sub-domains that can be efficiently
evaluated. We briefly enumerate the different kinds of leaf nodes.

Regular and Boundary Nodes If recursive subdivision yields a
regular face, then stencils for each of its 16 control points are added
to the stencil list, and a regular node is generated, referencing these
stencils. Faces with boundaries or hard creases, that are otherwise
regular, are handled by generating stencils for extrapolated control
points (as described by Kobbelt [1996]), after which they are han-
dled as regular nodes.

Crease Nodes Semi-sharp features can be eliminated by recur-
sive subdivision. However, otherwise regular sub-faces with a sin-
gle semi-sharp crease can be directly evaluated with good effi-
ciency [Nießner et al. 2012b]. Such faces are stored as crease nodes,
which reference 16 control points just like regular nodes, along with
a flag to indicate the creased edge, and a floating-point sharpness;
we discuss the evaluation of crease nodes in Section 6.2. Using
crease nodes can greatly reduce the size of quadtrees; we evaluate
this effect in Section 9.5.

Extraordinary Nodes If we reach our limit on subdivision depth,
and have not reached a directly-evaluable sub-face, then we create
an extraordinary node. Such a node corresponds to a corner of
the base-mesh face which is an extraordinary vertex (EV), so we
compute the limit position and two tangent stencils at that corner,
and add them to the stencil list. The extraordinary node references
these three stencils.

Figure 6: A terminal node captures the repeating pattern of adap-
tive subdivision at an extraordinary vertex (left). For each subdi-
vision level, the node references 24 control points shared by three
regular sub-domains (right).

Terminal Nodes In the common case (in the absence of semi-
sharp feature tags), there is a single quadtree structure that arises
around an EV (see Figure 6). At each subdivision level the quadtree
will have three regular nodes and one internal node, terminated by
an extraordinary node at the final level.

Rather than store this structure explicitly, we introduce a new kind
of node: a terminal node, which collapses n levels of the hierarchy
by standing in for 3n regular (or boundary) nodes and one extraor-
dinary node. In our implementation, an extraordinary node is a
special case of terminal node with n = 0.

The three regular nodes at each level will always share many control
points. Rather than reference 48 control point stencils per level
(16 each for three regular faces), a terminal node stores only 24
control points per level, laid out on a 5× 5 grid . For each terminal
node, we also store a rotation value, specifying which corner of the
parametric domain corresponds to the extraordinary vertex.

4.2 Computing Stencils for Control Points

The quadtree in a subdivision plan is used to map a u, v location to
a directly-evaluable sub-domain: e.g., a regular node. A leaf node
in the quadtree indirectly references the required control point sten-
cils (16 for a regular node). Each stencil encodes a control point
as a weighted sum over 1-ring vertices. Representing stencils as
weights over base vertices, rather than previous subdivision levels,
ensures that each stencil can be applied independently, with no syn-
chronization between levels.

Because stencils only depend on 1-ring vertices, we store each sten-
cil as a dense array of weights, one for each vertex in the 1-ring,
rather than pairs of weights and indices. Each face that uses the
subdivision plan stores its own list of 1-ring vertices (e.g., as en-
tries in a hardware index buffer).

Dense weight arrays reduce the amount of indirection-induced la-
tency when computing the value of a control point. However, be-
cause floating-point addition is not associative, these computations
are sensitive to the order of 1-ring vertices, which may not match
between neighboring faces. When water-tight evaluation is needed,
a per-face permutation must be applied to the weights to align them
with a consistently-ordered list of vertices (e.g., sorted by index).

In addition to the control points of regular faces, the subdivison
plan stores stencils for limit positions and tangents at each extraor-
dinary vertex, and at any parametric locations (e.g., face corners)
needed by the tessellation metric. We also refer to these additional
positions and tangents as “control points.”

For each control point, we calculate the minimum subdivision level
where it is required. Control point stencils are sorted by increasing
level, and we generate a small array indicating the number of sten-
cils required at or below each subdivision level, up to our maximum
level. Stencils required for extraordinary vertices or the tessellation
metric are always computed, so we set their required level to zero.



When computing the required level for control-point stencils, we
aggressively minimize the number of stencils applied at runtime,
by exploiting two important properties. First, our quadtree traversal
favors the patch interior when a parametric coordinates lies on a
split plane. Second, we assume that for any tessellation factor f ,
the hardware tessellator never produces a vertex with a parametric
u or v coordinate within 1/dfe of a patch edge (except for points
on the corresponding edge or corner). Under these conditions, if a
sub-domain intersects the interval (1/2n, 1− 1/2n), in either u or
v, its control points are needed at a level ≤n. The first property is
guaranteed by our implementation, as described in Section 6.1. The
second is guaranteed on compliant implementations of Direct3D 11
integer and fractional-even tessellation modes.

4.3 Caching Plans in a Configuration Database

The plan for a face depends only on the configuration of elements
that can exert an influence on the limit surface within its local do-
main. This includes the topology of the face and its 1-ring, sharp-
ness tags for incident edges and vertices, and boundary rules.

These properties are extracted when preprocessing a face, and used
as a key in a persistent configuration database. If a particular con-
figuration has been encountered before, the existing plan for that
configuration can be associated with the new face; otherwise, a new
plan is built and recorded in the database.

The configuration database may be shared across models, and per-
sisted across application runs. If faces are added, removed, or have
their local topology or tags changed at run time, we need only re-
peat processing for the subset of faces that are affected.

5 Runtime Face Setup and Subdivision

At runtime, the face setup and subdivision stage is applied to each
base mesh face, using a hull shader. This shader computes the
edge and interior tessellation factors and the corresponding con-
trol points needed for surface evaluation. We currently implement
both uniform tessellation and an adaptive metric based on that used
by Call of Duty: Ghosts [Brainerd 2016]. The required subdivision
level is computed as n = dlog2dfee, where f is the maximum tes-
sellation factor for the face. Then the subdivision step applies the
stencils for all level-n required control points, as described in Sec-
tion 4.2. The subdivision plan is organized such that stencils can be
applied in a simple loop over a flat array. Note that the subdivision
step only computes control points; the subdivided face topology is
encoded in the quadtree.

Each control point is computed as the convolution of the weights
in its stencil with the face’s 1-ring vertices. In general, 1-ring ver-
tices can be fetched directly from memory, but performance can be
improved by exploiting hardware vertex pipeline caches to amor-
tize costs across faces that share vertices. Our target GPU supports
up to 32 vertices as input to the hull shader. The vertex pipeline
is is used even when there are more than 32 vertices in the 1-ring;
any additional vertices are fetched directly from memory, bypass-
ing the vertex shader. Because stencils are simple arrays of weights
we can, without thread divergence, segregate the stencil convolu-
tion into pipeline vertices and memory-sourced vertices. Note that
because the hull shader can only read 32 pipelined vertices, appli-
cations that wish to use the vertex shader for, e.g., animation are
limited to 32 vertices in the 1-ring of each face; we have not found
this restriction an issue for typical models.

A key difference from typical tessellation methods is that our hull
shader outputs a variable (but bounded), rather than fixed, number
of control points. The control points computed for each face are
streamed to memory. In many cases, the control points written by

the hull shader remain in cache when read by the domain shader,
so there is little cost to communicate through memory. In our cur-
rent implementation, the application allocates a buffer big enough
to hold the worst-case number of control points for all faces in a
model; in most cases the subdivision step does not use all of the al-
located memory. In Section 8.1, we discuss future approaches that
could eliminate the need for this conservatively allocated buffer.

Many adaptive tessellation metrics require access to limit positions
or tangents to estimate lengths or curvatures on the limit surface.
In our system, these positions and tangents are encoded as stencils
in the subdivision plan. These, and any control points required at
every subdivision level (e.g., limit positions/tangents at EVs), are
computed before evaluating the tessellation metric. We use an en-
tire SIMT warp (32 threads) to process each patch; to best exploit
these threads, the number of stencils to apply up front is rounded up
to a multiple of the warp width. We have found that speculatively
computing some control points this way is a modest net win.

6 Surface Evaluation

The surface evaluation stage, implemented in the domain shader,
takes as input the subdivision plan, the control points written by the
subdivision step, and the parametric location of a vertex provided
by the hardware tessellator. Surface evaluation begins by traversing
the plan’s quadtree to the provided parametric location.

6.1 Quadtree Traversal

The traversal of the quadtree is done in an iterative loop, rather than
recursively. Traversal handles each type of node differently; we
discuss the different cases here.

Internal Nodes Traversal advances to the child node (quadrant)
containing the parameteric location. The parameteric location is
then localized to the domain of the child node. As stated in Sec-
tion 4.2, when a parametric location falls on a split between chil-
dren, we choose the interior-most child. This choice allows us to
compute fewer control points for power-of-two tessellation factors.

Extraordinary Nodes When traversal reaches an extraordinary
node, the limit position and tangent control points associated with
the node are fetched, and used to compute the final position and
normal for the vertex. Our implementation ensures that an extraor-
dinary node is only evaluated at the parametric location of the cor-
responding EV, so it can be implemented as a constant function.

Regular, Boundary, and Crease Nodes On reaching a directly-
evaluable node, traversal notes the location of the 16 control points
(stored as a 4 × 4 array), and any crease data. The shader then
proceeds to B-spline evaluation.

Terminal Nodes When traversal reaches a terminal node, the
correct sub-face is computed using logic similar to Stam’s
method [1998]. The subdivision level to descend to is given by
n = b−log2(max(u, v))c, and both u and v are scaled by 2n to
localize them to the correct sub-domain. As an optimization, our
implementation performs this mapping using integer math on the
exponent bits of u and v.

This logic relies on the extraordinary vertex being at the origin in
the parametric domain; we rotate the domain as needed. The level n
must also be compared to the range of levels stored in the terminal
node; a parametric location that maps to a level beyond those stored
in the node treats the terminal node as an extraordinary node.

Otherwise, the traversal notes the location of the 16 control points
for the regular sub-face the parametric location lands in (stored as
a 5× 5 array), and proceeds to B-spline evaluation.



6.2 B-Spline Evaluation

Whether traversal finds a regular, boundary, crease, or terminal
node, all sub-domains that are evaluable as B-spline patches are
funneled through a common code path, to reduce SIMT divergence.

First, at each of u and v we compute the B-spline basis value,
and its derivative. Next, if there is a semi-sharp crease in the
patch, the implementation computes and applies a crease matrix
M using the construction from Nießner et al. [2012b]. Whereas
Nießner et al. use M to transform the control points of the surface
(basis ·(M · controlPoints)), we observe that it is equivalent, and
more efficient in our case, to apply the matrix to the basis values
((basis ·M) · controlPoints). This formulation also lets us iso-
late runtime support for semi-sharp creases to a single place in the
pipeline; nothing else in our runtime implementation needs to be
aware that semi-sharp creases exist.

Finally, our implementation fetches 16 control points for the sub-
domain (from the buffer previously written by the hull shader), and
evaluates the B-spline surface using the (potentially modified) ba-
sis functions. The only difference between the terminal and non-
terminal cases is whether the 4× 4 control points come from a 2D
array with a stride of 5 or 4.

7 Special Faces

The algorithm presented so far can render a quad-only mesh in a
single pass, with one primitive per face submitted to the hardware
tessellator. In this section, we relax some of these assumptions to
improve generality and performance.

7.1 Regular Faces

Regular (non-boundary/-crease) faces produce a subdivision plan
with only a single regular node, and 16 stencils that reproduce
base-mesh vertices. Rather than invoking stencil calculations and
traversing a single-node quadtree, it is more efficient to render these
faces as standard B-spline patches using the tessellation pipeline in
a conventional manner. As is typical for other GPU subdivision
surface rendering approaches, our implementation can split regular
faces into a distinct optimized draw pass.

With this optimization, we can no longer render an entire subdi-
vision surface model in a single draw call. However, the multiple
draw calls used are independent, with no synchronization required,
unlike the dependent compute and draw passes of FAS.

7.2 Non-Quad Faces

Our implementation handles non-quad faces by performing one
round of subdivision on them during preprocessing; for an n-gon
face, this yields n quads. The resulting quad sub-faces are then
processed as normal. Note that we do not perform a global sub-
division step—only non-quad faces are subdivided—and this step
occurs during preprocessing, rather than at runtime.

The quads resulting from n-gon faces can be submitted in the same
draw call as other (irregular) quad faces, so supporting non-quad
faces does not increase the number of draw calls required.

By subdividing only some faces, T-junctions are introduced where
quad and non-quad faces meet. To avoid cracks, the implementation
must ensure that:

• tessellated vertex locations along the shared edge(s) line up

• computed vertex attributes at those locations will be the same

The first issue is solved in our implementation by constraining the
tessellation factors along any edge shared between a quad and non-
quad face. Considering the edge of the quad face, we require that it
be of the form 2k for integer tessellation, or 4k for fractional-even
tessellation, with k an integer. The adjacent edge of the non-quad
face can then be given a tessellation factor of k or 2k, respectively.
This scheme is incompatible with fractional-odd tessellation.

The second issue is no different from ensuring consistent evaluation
between other neighboring faces (e.g., between regular and irregu-
lar faces); our scheme ensures that evaluations along the shared
edge will be mathematically equivalent, but may not be water-tight.

7.3 Macro Faces

At low tessellation rates, off-line subdivision outperforms hardware
tessellation, in part due to per-patch overheads, and the inability
to share tessellation vertices across primitives. These issues can
be partly mitigated by aggregating adjacent base mesh faces into
macro faces. We present two alternative face aggregation schemes.

Rectangular Macro Faces In the first scheme, the topology of
the base mesh is divided into rectangular regions by separatrix in-
tersection (readers unfamiliar with this concept may benefit from a
survey by Bommes et al. [2013]). From each edge incident to an
extraordinary vertex, a separatrix span is extended through regular
vertices until it terminates at an extraordinary vertex or boundary.
The intersections of the separatrices form the corners of rectangular
regions of faces, which in aggregate collect the entire mesh topol-
ogy into rectangular macro faces. T-junctions between macro faces
are impossible, because a vertex cannot be an intersection for a sub-
set of incident separatrices. In the special case of toroidal homo-
topy, an arbitrary regular separatrix origin is chosen.

Figure 7: A 3 × 2 rectangular macro face formed by the inter-
sections of separatrices from two extraordinary vertices (orange).
Aggregated irregular faces (T) reference quadtree root nodes, while
regular faces (R) share a grid of B-spline control points; the control
points (green) used by the shaded regular face are shown.

The subdivision plan for a rectangular macro face uses a W × H
uniform grid of per-face quadtrees (Figure 7). As a special case,
regular faces do not use control point stencils, and instead share an
array of (W + 3) × (H + 3) base vertices. The quadtrees and
stencils for the remaining faces are merged and de-duplicated.

Figure 8 shows a model rendered with rectangular macro faces. The
domain shader indexes and re-parameterizes the parametric loca-
tion into the appropriate grid cell. Irregular cells are evaluated using
their quadtree; for regular cells, 16 control points are fetched from
the (W + 3)× (H + 3) array and evaluated as a B-spline patch.

Depending on base mesh topology, separatrix intersection can de-
lineate rectangular macro faces of arbitrary size. Current hardware
limits tessellation factors to 64 for the whole macro-face; as such,



Figure 8: The Stirling model ( c©Disney/Pixar) rendered with
rectangular macro faces. Colors indicate different macro faces;
shading shows the parameter (sub-)domains of aggregated face
quadtrees. The wheels show that macro face dimensions are lim-
ited to 16, allowing a maximum per-face tessellation factor of 4.

the effective tessellation factor for base faces is limited by the size
of the macro face. Our implementation greedily adds perpendicu-
lar separatrices to spans longer than n edges, allowing aggregated
faces to reach at least tessellation factor 64/n.

In the special case of uniform integer tessellation factors, motor-
cycle graphs [Eppstein et al. 2008] can be employed, allowing for
T-junctions between macro faces. Given a per-face tessellation fac-
tor of f , a W × H macro face would use tessellation factors of
f ·W and f ·H , ensuring a tessellated vertex is placed at each ver-
tex of the base mesh. Adjacent faces in the original mesh will share
a consistent set of tessellation vertices along their shared edge.

Regular Quartet Macro Faces In the second scheme, quartets of
regular faces incident to a shared vertex are greedily extracted from
the base mesh topology. A single 5× 5 array of base mesh vertices
can be used to evaluate any of the aggregated faces (Figure 9).

Figure 9: A regular quartet macro face aggregates 4 regular faces.
B-spline control points (green) for the shaded face are shown.

Figure 10 shows a model rendered with separate passes for quar-
tet, irregular, and un-aggregated regular faces. The shader used for
quartets is similar to that for regular faces, but with 25 rather than
16 control points. The domain shader selects the correct sub-face,
maps the location, and evaluates a B-spline patch using a subset of
the control points.

When using no-uniform tessellation factors, quartets must be ad-
jacent to either other quartets, or pairs of individual faces, to avoid
cracks. Edges shared between quartets and individual faces are han-
dled similarly to T-junctions between quad and non-quad faces.

8 Hardware Proposals

Our algorithm enables subdivision surfaces to be streamed through
GPU tessellation pipelines, outperforming state-of-the-art tech-
niques on current hardware. Nonetheless, some simple changes to
GPU hardware could further improve the performance and memory
efficiency of future subdivision surface rendering pipelines.

Figure 10: The Stirling model ( c©Disney/Pixar) with regular, quar-
tet, and irregular faces. As the tessellation factor is uniform, quar-
tets are allowed to be offset relative to one another.

8.1 Subdivision Ring Buffer

In our software implementation, the control points required for
a particular adaptive subdivision level are calculated in the hull
shader and used by the domain shader. Current graphics APIs
require the amount of data output from each stage to be fixed at
compile time. Statically allocating for the worst-case control point
count would waste bandwidth, and limit occupancy. Thus, our im-
plementation passes control points through a scratch buffer in mem-
ory; the buffer is sized for the worst case, but in practice we expect a
fraction to be resident in caches. In practice, only a subset of prim-
itives are processed at a time, so a smaller buffer should suffice.

As an example, the Armor Guy model has 8,409 irregular faces,
which at maximum tessellation require 1,373,540 control points, or
22 MB of scratch storage at 16 bytes per aligned control point. On a
GeForce GTX 980, the occupancy of our algorithm is limited to 12
primitives for each of 16 SMs. At an average of 192 control points
per face, 1MB of storage would suffice for all primitives in flight.

We thus propose that hardware should support a subdivision ring
buffer, written by the hull shader, and read by the domain shader.
Upon determining the number of control points to write, a hull
shader would allocate space on the ring buffer, and write the com-
puted control points to that memory. The allocation step might
amount to an atomic memory operation; indeed, an application can
already implement simple allocation with atomic adds.

Deallocation is a harder task, benefiting more from hardware sup-
port. The space allocated by a hull shader needs to be kept live un-
til all downstream domain shader invocations have completed; at-
tempting to, e.g., reference-count this allocation in software would
be complex and costly, but hardware pipelines already perform life-
time management for other data that flows between these stages.
The total space needed for a hardware-managed ring buffer depends
on the maximum number of primitives in flight, and the average
control point count for each primitive.

8.2 Subdivision Cache

Our implementation processes each face independently, but in prac-
tice many control points will be shared between neighboring faces,
or even across render passes (for example, when rendering to
shadow maps). The Big Guy model requires a maximum of 105,648
control points for all faces to reach subdivision level 6. If stencils
are de-duplicated between faces, this count decreases to 51,199.

We propose a subdivision cache, to enable re-use of control points
within and across passes. A subdivision cache would be allocated
by the application, to hold a fixed number of control point, ref-
erenced by index. The cache might be implemented as a buffer of
control points, along with a buffer of flags (one per control point) to
indicate validity. Before computing a control point, the hull shader
would check for an existing entry in the cache at the corresponding
index; on a miss it would compute the new control point and insert
it into the cache.
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Figure 11: Comparison of our method (green) against DFAS [Schäfer et al. 2015] (red), FAS [Nießner et al. 2012a] (orange), OpenSubdiv
(blue), and the approximate Gregory scheme [Loop et al. 2009] (aqua), for each of the models in Figure 12. We outperform all existing
non-approximate methods by a significant margin, and our performance is on par with the fastest approximate method that uses Gregory
patches. Note that Gregory cannot handle semi-sharp creases, thus Armor Guy and Stirling cannot be rendered with this approach.

The subdivision ring buffer and subdivision cache are mutually ex-
clusive approaches, optimized for different use cases. The ring
buffer optimizes for the convenience of single-pass streaming sub-
mission, and leverages the way our algorithm can process patches
in isolation. The subdivision cache optimizes for repeated submis-
sion, and mitigates the primary source of overhead in our algorithm
(redundant control point computations).

9 Evaluation

We evaluate our method on NVIDIA GeForce GTX 980 hardware,
under Windows, and compare against the methods listed in Ta-
ble 1. Note that we compare against the published code for FAS and
DFAS, while for Gregory, we use the optimized implementation in
the FAS codebase. Figure 12 shows renderings of the models used
for evaluation, and Table 2 summarizes their statistics and features.

9.1 End-to-End Rendering Performance

Figure 11 compares end-to-end time to render the models with our
approach (Ours) and state-of-the-art methods. The adaptive subdi-
vision implementations (FAS, DFAS, OSD) submit different geom-
etry based on the desired tessellation factor. In order to provide a
fair comparison, we use uniform tessellation factors, and only sub-
divide as required for each factor. Performance results for OSD are
only shown for power-of-two tessellation factors; the OSD viewer
enforces this restriction for uniform tessellation. The Gregory ap-

Name Description API
Ours Our adaptive quadtree approach OpenGL
OSD OpenSubdiv 3.0 Direct3D 11
FAS [Nießner et al. 2012a] Direct3D 11
DFAS [Schäfer et al. 2015] Direct3D 11
Gregory* [Loop et al. 2009] Direct3D 11

Table 1: Rendering methods evaluated. Note that Gregory only ap-
proximates the limit surface and cannot handle semi-sharp creases.

proximation scheme does not support creases, so results are only
available for Big Guy and Monster Frog. Also, The DFAS imple-
mentation failed to load the more complicated models.

In Figure 11, our method is between 1.2 and 3.4 times faster
than the other non-approximate approaches for tessellation fac-
tors of 3 and up, while FAS is sometimes faster for low factors.
Our performance is competitive with the fastest approximation
(Gregory); however, Gregory patching cannot handle semi-sharp
creases, which are widely used (e.g., Armor Guy and Stirling).

The performance benefit of our method is primarily due to sub-
mitting fewer primitives to the tessellation hardware, thus reducing
per-primitive costs. For irregular faces, FAS, DFAS, and OSD sub-
mit more patches as the tessellation rate increases, while we always
submits the same, constant number of primitives. On models with
many regular faces (e.g., Stirling), the benefit of our method is less-
ened; FAS has approximately equal performance on regular faces.



Figure 12: Models used in our evaluation, from left to right: Big Guy, Monster Frog, Armor Guy ( c©2014 DigitalFish, Inc. All rights
reserved), and Stirling ( c©Disney/Pixar).

Model Faces Regular Irreg. Tags
Big Guy 1450 858 592 none
Monster Frog 1284 510 774 none
Armor Guy 8639 962 7677 creases
Stirling 79895 35264 44631 creases

Table 2: Statistics for models used, including number of faces and
a breakdown into regular/irregular faces. Two models make use of
crease tags, and all but Big Guy include non-quad faces.
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Figure 13: The performance benefit of Ours is greatest for irregu-
lar faces; Ours can be over three times as fast as FAS for a synthetic
model of only irregular faces (a 12× 12× 10 grid of cubes).

Figure 13 shows how we compare to FAS on a synthetic model
with only irregular faces. In this range of tessellation factors, the
performance of FAS is dominated by per-primitive costs; note how
the FAS results are flat for tessellation factors 5 through 8, which
all submit the same number of primitives.

FAS can be faster than our method at low tessellation rates because
our single-pass implementation does not share computed control
points across faces, while the multi-pass FAS implementation does.
The potential benefit of sharing control points is greatest at low
tessellation factors. To show this effect, we next break down the
timings for FAS and our approach.

9.2 Time Breakdown

Figure 14 summarizes how much time FAS and our method take to
compute control points (by applying stencils), and to draw a tessel-
lated surface for the Armor Guy model. In the case of FAS, the time
spent on stencils is clearly delineated by its own compute pass. In
our case, we perform control point computation and drawing in the
first frame, while subsequent frames disable control point compu-
tation in the hull shader and re-use the previously computed values.
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Figure 14: Breakdown of time spent applying stencils (hatched)
and doing other rendering work (solid) for FAS and Ours. FAS ap-
plies stencils in a distinct compute pass; Ours integrates this work
into the hull shader, at the cost of some redundant computation.

For our method, stencil computation constitutes between 30% and
54% of the total time, while FAS spends between 13% and 17%; in
both cases the fraction of time spent on stencils decreases at higher
tessellation factors. We spend more time overall on stencil applica-
tion, since our implementation must independently compute shared
control points per-face. Ours compensates for this with increased
drawing efficiency. In scenarios where control points can be re-
used across passes or frames, each implementation only pays for
the drawing time (solid bars) in this graph.

In the case of a tessellation factor of 1 or 2, our method has slightly
better draw time than FAS; the end-to-end performance difference
is primarily due to redundant control point computations. In Sec-
tion 8.2, we describe how an idealized subdivision cache could
avoid redundant control point computations, and how to improve
the performance at low tessellation factors.

9.3 Adaptive Tessellation

When using uniform tessellation (as in Figure 11), FAS outper-
forms DFAS, which includes additional overhead to support non-
uniform subdivision. Figure 15 compares DFAS and our method
using a distance-adaptive tessellation metric on Big Guy. The per-
formance of both approaches improves with distance, but we have
lower overheads, and better performance across the distance range.

9.4 Macro Faces

We evaluated the impact of macro faces (Section 7.3) on render-
ing performance, using the Stirling model, as well as a synthetic
model (a torus) composed entirely of regular faces. The 79,895 in-
put faces of the Stirling model were aggregated into 12,737 rectan-
gular macro faces. Using quartet macro faces instead yields 4,852
quartets, 46,110 irregular and 15,852 individual regular faces.
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Figure 15: Our approach outperforms DFAS when using distance-
adaptive tessellation, due to lower overheads and faster drawing.

Figure 16: Pipeline stalls limit the performance of rectangular
macro-patches. In this diagnostic visualization, color boxes repre-
sent active warps. Individual long-running hull shader warps (pur-
ple) stall the tessellation pipeline, reducing overall performance.
Stirling model c©Disney/Pixar.
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Figure 17: Performance evaluation of using rectangular and quar-
tet macro-faces. Stencil time is removed to isolate draw perfor-
mance from occupancy limits related to the hull shader (Figure 16).

We found that rectangular macro faces did not improve end-to-end
performance for non-trivial models; upon investigation, we found
that when using rectangular macro faces a small number of long-
running warps in the hull shader were keeping other work from run-
ning. Figure 16 shows a diagnostic visualization of running GPU
tasks; the horizontal axis is time, and the vertical axis shows dif-
ferent hardware warps. It appears that primitives are consumed in
order by the hardware tessellator (in order to provide the ordering
guarantees required by rasterization APIs), so that a long-running
hull shader can stall the pipeline. Aggregating many faces (and
their control points) into macro faces increases the worst-case time
spent on control point computations in the hull shader, increasing
the likelihood and impact of pipeline stalls.

Nodes Stencils Render (ms)
Torus
Recursive 8,634 6,200 0.084

Direct 1,338 (-84%) 1,232 (-80%) 0.052 (-38%)
Stirling
Recursive ∼5.3M ∼4M 9.83

Direct ∼4M (-23%) ∼3.4M (-14%) 10.46 (+6%)

Table 3: Impact of direct vs. recursive evaluation of creases on total
size of subdivision plans (quadtree nodes and stencils), as well as
render time, for Stirling and a creased torus (Figure 18).

Figure 18: A creased torus without (left) and with (right) direct
evaluation of semi-sharp creases, using exponential (left) and lin-
ear (right) numbers of quadtree nodes, respectively.

In Figure 17, we remove the influence of these pipeline stalls by
comparing draw times only; control points are computed in a pre-
pass. Under these conditions, rectangular macro faces improve per-
formance at the lowest per-face tesellation factors, but benefit de-
creases as tessellation factors increase. Quartet macro faces provide
more benefit for the synthetic model with only regular faces than for
Stirling. In both cases, performance decreases as tessellation fac-
tor increases. The use of a more expensive domain shader makes
macro faces less valuable at higher tessellation factors.

If future hardware can address the bottlenecks in Figure 16, rect-
angular macro faces could be useful for minification. Macro faces
outperform individual faces for tessellation factors of 2 and below,
and enable effective per-face tessellation factors below 1.0.

9.5 Direct Evaluation of Semi-Sharp Creases

As discussed in Section 6.2, our implementation supports direct
evaluation of semi-sharp creases. In the best case, direct evalu-
ation avoids a potentially exponential increase in the number of
quadtree nodes and control points required (w.r.t. crease sharpness).
However, directly handling creases adds complexity to our domain
shader.

We evaluated the impact of using direct evaluation, as opposed to
recursive subdivision, for semi-sharp creases; the results are sum-
marized in Table 3. The first model is a torus with several creases of
sharpness 4.7 (see Figure 18). The second is the Stirling which uses
creases of sharpness 1, 2, and 3. For each model and approach, the
table gives the total number of quadtree nodes and stencils across
all subdivision plans, as well as end-to-end render times. In the
case of the torus, direct evaluation yields a speedup of 38%, while
for the Stirling we observe a slowdown of 6%.

The reason that enabling direct evaluation causes a slowdown for
Stirling is that the code path that supports semi-sharp creases is al-
ways present, even for faces that don’t need it. The added code
increases register pressure, thus slightly lowering warp occupancy.
Furthermore, only a subset of domain shader threads execute the



Vertex Index Plans Quadtree Stencils Scratch
Big Guy 23KB 107KB 19 21KB 346KB 1.6MB
Monster Frog 20KB 119KB 70 76KB 1.1MB 2.2MB
Armor Guy 157KB 1MB 2,099 2.7MB 25MB 21MB
Stirling 1.3MB 7MB 1,859 1.8MB 23MB 52MB

Table 4: Memory required for models in Figure 12, including vertex
and index buffers, number of subdivision plans, sizes of quadtree
and stencil data, and size of scratch buffer needed at runtime.

crease-related code, increasing SIMT divergence. Because only a
small fraction of the faces on Stirling are creased (and these have
very low sharpness values) the additional overhead of rendering
them via recursive quadtree nodes is low.

9.6 Memory Usage

Table 4 summarizes the memory requirements for our implemen-
tation to render each of our models. The vertex storage only in-
cludes base mesh vertex position data; this is independent of our
algorithm, but included for reference. The more complex models
require more plans, due to a greater variety of topological configu-
rations and crease tags. The static storage for each model is domi-
nated by stencils for support control points; storing this data more
compactly is a possible direction for future work.

The largest runtime cost is the “scratch” memory required to stream
supports from the hull shader to the domain shader. In the case of
our largest model, Stirling, the application must allocate a scratch
buffer of 55 MB. Hardware support for a subdivision ring buffer
(Section 8.1) would reduce this to a fixed driver-managed overhead.

9.7 Limitations

Our approach relies on having a fixed limit on subdivision depth,
when generating the subdivision plan. Furthermore, for perfor-
mance we rely on the fact that control points at deeper adaptive
subdivision levels are only needed at higher tessellation rates.

The fixed limit on subdivision depth means that our approach can-
not accurately evaluate the limit surface at arbitrary parametric lo-
cations, which might be desirable, e.g., to produce high-quality nor-
mals by evaluating the surface per-fragment. Where approximate
results are acceptable, our extraordinary nodes could be replaced
with, e.g., Gregory patches approximating the limit surface.

Our approach also has limitations that make it difficult to use the
fractional-odd hardware tessellation mode. First, our approach to
avoiding cracking for non-quad faces and quartet macro-faces (Sec-
tions 7.2 and 7.3) relies on placing a tessellated vertex at the mid-
point of edges that would otherwise create T-junctions; this is not
possible with an odd tessellation factor. Second, for tessellation
factors in the (1, 2.5) range, tessellated vertices may have paramet-
ric coordinates arbitrarily close to patch corners, violating our as-
sumption that control points for deeper subdivision levels are only
needed at higher tessellation rates (Section 4.2).

Our current implementation does not support hierarchical ed-
its [Forsey and Bartels 1988], but we expect that our subdivision
plan structure could be extended to represent edits. However, be-
cause edits might require adaptive subdivision in the interior of a
face (not just at corners/edges), our optimizations to avoid comput-
ing control points at low tessellation factors might be less effective.

As described in Section 5, when using a vertex shader (e.g., for an-
imation), the number of vertices in the 1-ring of a face is restricted
to the number of vertices that can be passed from a vertex shader to
a hull shader (32 on current APIs and GPUs).

Figure 19: Our approach has been implemented in a produc-
tion game engine, and is used here to render the character’s face.
c© 2014 Activision Publishing, Inc.

Although we developed our algorithm and implementation only for
Catmull-Clark subdivision [1978], we expect the technique would
generalize to other subdivision schemes such as Loop [1987].

10 Conclusion

We have introduced a novel approach for rendering subdivision sur-
faces, which integrates into the hardware tessellation pipeline. By
submitting only a single primitive for each input quad face, we im-
prove both the simplicity and efficiency of rendering. Our approach
achieves performance up to three times that of state-of-the-art meth-
ods for typical tessellation factors.

We have integrated our approach into a production game engine
(Figure 19), and hope that by demonstrating a streamlined approach
for rendering full-featured subdivision surface models, we can spur
further interest in, and adoption of, subdivision surfaces in game
rendering. With further improvements in hardware, subdivision sur-
faces may soon be as easy to render as triangle meshes.
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BOLZ, J., AND SCHRÖDER, P. 2002. Rapid evaluation of catmull-
clark subdivision surfaces. In Proceedings of the seventh inter-
national conference on 3D Web technology, ACM, 11–17.
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