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Fig. 1. 3DLite takes as input a 3D scene reconstruction captured with a commodity RGB-D sensor. The initial reconstruction on the left is obtained with a
state-of-the-art volumetric fusion approach. Due to the nature of these methods, the 3D model contains many holes, noisy geometry, and blurry surface
textures. 3DLite first computes a primitive abstraction of a scene, on top of which we formulate an optimization problem to generate sharp surface textures,
combined from different input RGB frames. Based on this abstraction, we complete the high-level scene geometry, and use image inpainting to synthesize
color unobserved regions. In the end, we obtain lightweight, low-polygon reconstructions that we believe are a step towards leveraging RGB-D scanning for
content creation pipelines. Note the complete room geometry and the sharp surface textures on the right.

We present 3DLite1, a novel approach to reconstruct 3D environments using
consumer RGB-D sensors, making a step towards directly utilizing captured
3D content in graphics applications, such as video games, VR, or AR. Rather
than reconstructing an accurate one-to-one representation of the real world,
our method computes a lightweight, low-polygonal geometric abstraction
of the scanned geometry. We argue that for many graphics applications
it is much more important to obtain high-quality surface textures rather
than highly-detailed geometry. To this end, we compensate for motion
blur, auto-exposure artifacts, and micro-misalignments in camera poses by
warping and stitching image fragments from low-quality RGB input data to
achieve high-resolution, sharp surface textures. In addition to the observed
regions of a scene, we extrapolate the scene geometry, as well as the mapped
surface textures, to obtain a complete 3D model of the environment. We
show that a simple planar abstraction of the scene geometry is ideally suited
for this completion task, enabling 3DLite to produce complete, lightweight,
and visually compelling 3D scene models. We believe that these CAD-like
reconstructions are an important step towards leveraging RGB-D scanning
in actual content creation pipelines.
13DLite is available under http://graphics.stanford.edu/projects/3dlite/
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1 INTRODUCTION
RGB-D scanning has made rapid advances in recent years with the
introduction of commodity range sensors, such as the Microsoft
Kinect, Intel RealSense, or Google Tango. State-of-the-art online
and offline 3D reconstruction methods now allow remarkable cap-
ture and digitization of a variety of real-world environments, with
faithful geometric fidelity [Chen et al. 2013; Choi et al. 2015; Dai
et al. 2017b; Izadi et al. 2011; Newcombe et al. 2011; Nießner et al.
2013]. Although the intended applications of these methods cover a
variety of gaming, virtual reality, and augmented reality scenarios,
the quality of the resulting 3D models remains far from the cal-
iber of artist-modeled content. In particular, current reconstructions
still suffer from noise, oversmoothing, and holes, rendering them
inadequate for use in production applications.
In many graphics applications, we observe that the surface tex-

tures are more important to visual perception than geometry; for
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instance, many video games make use of techniques such as bill-
boarding or bump mapping [Decoret et al. 1999] to achieve high-
detail visuals at low cost, with almost imperceptible difference to
using accurate geometry. Unfortunately, the color quality of exist-
ing 3D reconstruction methods often suffers from artifacts due to
motion blur and rolling shutter from commodity color cameras (see
Fig. 19(a)). This is compounded by oversmoothing and camera pose
micro-misalignments due to popular reconstruction techniques. For
instance, the seminal volumetric fusion work [Curless and Levoy
1996] is commonly used to generate a 3D model from input RGB-D
frames by performing a weighted average over projected depth and
color observations. While effectively regularizing out noise, this
also results in oversmoothed geometry and color. Additionally, since
camera poses are computed from imperfect color and noisy, rela-
tively low-quality depth, they often suffer from micro-drift, which
further exacerbates resulting visual artifacts such as ghosting and
oversmoothing. Moreover, for effective use in gaming, VR, or AR ap-
plications, reconstructed environments must not have holes, which
are always present in real-world scans, due to occlusions. Thus, our
goal is to employ a relatively simple geometric representation of
a scene to facilitate both high-quality texture mapping as well as
surface- and texture-filling in occluded regions.
In this paper, we present 3DLite, an approach to generate light-

weight, complete, CAD-like models with high-quality textures of
large-scale indoor scenes. We take as input an RGB-D video se-
quence from a handheld commodity sensor, and first reconstruct
the scene with existing 3D reconstruction methods. Since we aim
to generate complete scenes and sharp, clean textures, we employ
a primitive-based abstraction to represent the scanned environ-
ments. In particular, we use plane primitives, as planes facilitate
texture mapping as well as scene completion through extrapola-
tion, thus generating a denoised geometric representation of the
scene. We first optimize for these primitives under a Manhattan as-
sumption, since man-made environments are often designed in such
highly structured fashion. In order to complete the scene geometry
in occluded regions, we formulate a new hole-filling approach by
extrapolating the planar primitives according to unknown space
as seen by the camera trajectory. That is, we respect the known
empty space in the scene and only fill holes in regions unseen by
the camera. This generates a complete geometric representation of
the scene. We then perform a novel texture optimization to map
the scene geometry with sharp colors from the input RGB data. To
generate complete textures for the entire scene, we follow this with
a texture completion in unseen, hole-filled regions. Since camera
poses estimated from noisy RGB-D data are prone to micro-drift, our
texture optimization step solves for refined rigid and non-rigid im-
age alignments, optimizing for photo-consistency using both sparse
color and dense geometric information. To mitigate the effects of
motion blur and auto-exposure, we perform an exposure correction,
and select and stitch together only the sharpest regions of the input
RGB images, obtaining globally consistent, sharp colors. Finally, for
regions which lack color due to occlusions in the input scan, we
inpaint the texture using color information from similar textures in
the scene.
3DLite is a fully-automated, end-to-end framework designed to

produce 3D models with high-quality textures mapped onto clean,

complete, lightweight geometry, from consumer-grade RGB-D sen-
sor data. We demonstrate its efficacy on a variety of real-world
scenes, showing that we can achieve visually compelling results
even with a simplified geometric representation.
In summary, our main contribution is a fully-automated 3D re-

construction system featuring

• a lightweight geometric abstraction,
• high-quality surface textures,
• and complete 3D representations w.r.t. both geometry and

color.

2 RELATED WORK
3D reconstruction has been extensively studied over the last sev-
eral decades. In this section, we discuss popular state-of-the-art
approaches to generating 3D models of scanned environments, as
well as the use of planar priors to guide reconstruction, and color
map optimization on a geometric model.

3D reconstruction. Among both state-of-the-art online and of-
fline 3D reconstruction methods, the most common approach to
computing surface colors is through a moving average of the cor-
responding colors of the input images. Volumetric fusion [Curless
and Levoy 1996], widely used by many state-of-the-art online and
offline reconstruction methods [Chen et al. 2013; Choi et al. 2015;
Dai et al. 2017b; Izadi et al. 2011; Newcombe et al. 2011; Nießner et al.
2013] is a very efficient approach to generating an implicit surface
representation of a scene and effectively regularizing out noise input
sensor data; unfortunately, it also leads to strong oversmoothing in
both geometry and color, since depth and color measurements are
fused projectively through a weighted average from varying views.
Similarly, surfel-based reconstruction approaches, which generate a
point representation of a scene, also tend to compute surface points
and colors through a moving average [Keller et al. 2013; Whelan
et al. 2015]. Oversmoothing from these averaging schemes is often
further compounded by small errors in camera estimation (as poses
are computed from noisy and blurry depth and color).

Planar impostors in image-based rendering. The idea of ap-
proximating distant geometry through images called impostors was
widely used in the image-based rendering literature [Decoret et al.
1999; Sillion et al. 1997]. These images are in fact textured planes opti-
mally positioned so as to generate approximately correct views from
a range of viewpoints. Image-based rendering has also been recently
used in custom renderers with a geometry proxy, and achieved high-
quality results using sparse DSLR input images [Hedman et al. 2016].

Indoor and outdoor 3D reconstruction using planar priors.
Since man-made environments are typically constructed in a highly-
structured fashion, with an abundance or orthogonal and parallel
planes, a Manhattan plane assumption can be exploited to facili-
tate tracking in indoor scenes, particularly in the case of RGB-D
scanning, as depth information is directly available. Many methods
have been developed to incorporate planar information to improve
camera tracking in 3D scanning scenarios. Dou et al. [2012] and
Taguchi et al. [2013] both incorporate various plane correspon-
dences with feature point correspondences to improve tracking
robustness. Zhang et al. [2015] detect both planar structures and
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Fig. 2. Framework overview: our method takes a set of RGB-D frames as input, from which we compute a primitive abstraction that is used to optimize for
sharp surface textures and infer missing scene parts. In the end, we obtain a low-polygonal, lightweight 3D reconstruction.

repeated objects to mitigate camera drift, achieving improved re-
construction quality in a KinectFusion-style framework. In order
to reduce sensitivity towards potential errors in initially detected
structural correspondences, Halber and Funkhouser [2017] employ
a hierarchical optimization approach incorporating planar relation-
ship constraints with sparse features, enabling registration of very
long RGB-D scanning sequences.

In addition to improving tracking robustness, Dzitsiuk et al. [2017]
use plane priors estimated directly on the implicit signed distance
field representation of the scene to further de-noise and complete
the reconstruction, producing very stable geometry even during
real-time updates. Surface measurements near detected planes are
replaced with the plane measurements to reduce noise, and plane
geometry is extrapolated in unobserved space to fill holes. Our ap-
proach similarly exploits planes as a clean geometric representation
of a 3D scene which can be leveraged to complete 3D scenes; how-
ever, Dzitsiuk et al. [2017] focus solely on geometry denoising and
completion, whereas the goal of 3DLite is to create visually com-
pelling models by generating high-quality texture for complete 3D
models.

Color optimization for 3D reconstruction.Various approaches
have been developed to create a color map on a geometric model
from multiple input images. Several techniques use manually se-
lected point correspondences to provide image-to-model registra-
tion [Neugebauer and Klein 1999; Ofek et al. 1997; Rocchini et al.
1999; Stamos and Allen 2000]. Given precisely registered pairs of
color and depth, camera poses can be optimized for to maximize
photo-consistency [Bernardini et al. 2001; Johnson and Kang 1999;
Pulli et al. 2005; Pulli and Shapiro 2000]. For 3D scanning using
commodity-sensor data with various misalignments arising from
coarse geometry and optical irregularities, Zhou and Koltun [2014]
account for these issues by optimizing for both the rigid camera
poses as well as non-rigid warping for each image to maximize
dense photo-consistency. Bi et al. [2017] build on this work: they
synthesize a set of photometrically consistent aligned color images
to produce high-quality texture mapping even under substantial

geometric inaccuracies. We also build upon the approach of Zhou
et al. [Zhou and Koltun 2014]; however, for our room-scale scenario,
optimizing purely for a dense energy term remains sensitive to ini-
tial poses and easy to end up in local minima. Rather, we employ a
sparse-to-dense optimization, using sparse color features and geo-
metric primitive constraints to help reach the basin of convergence
of the dense photo-consistency energy.

3 OVERVIEW
From an input RGB-D video, 3DLite first computes a primitive-based
abstraction of the scene, and then leverages this representation to
optimize for high-quality texture maps, as well as complete holes
in the scene with both geometry and color; see Fig. 2. We capture
the input RGB-D stream with a handheld, consumer-grade RGB-D
sensor. Using a modern RGB-D reconstruction system (i.e., Bundle-
Fusion [Dai et al. 2017b]), we compute initial camera poses for each
frame and a truncated signed distance field (TSDF) representation
of the scene, from which we extract an initial mesh. To generate the
primitive-based abstraction, we detect planes for each frame, and
then merge them into scene primitives according to the estimated
camera poses (see Sec. 4). We then optimize for the global geomet-
ric structure by favoring primitives to support a Manhattan world
assumption, so as to encourage orthogonal and parallel structures.
From this lightweight representation of the scene, we then opti-

mize for texture maps over the geometry, directly addressing the
issues of motion blur and small camera pose misalignments. We
apply an exposure correction to achieve consistent color across the
input images, which may vary with auto-exposure and white balanc-
ing (see Sec. 5.2). We must then refine the camera poses to precisely
align the color frames to the new model geometry. To this end, we
build upon the approach of Zhou and Koltun [2014] to optimize
for refined camera poses and non-rigid image corrections. For our
large-scale scanning scenario, we introduce sparse color feature and
geometric primitive constraints to help bring the optimization into
the basin of convergence of a dense photometric consistency energy
(see Sec. 5.3). In order to account for motion blur in input color
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images, we introduce a method to sharpen color projected from
input frames to the model. Rather than select sharpest keyframes
throughout the input video, which may still select relatively blurry
frames or lose color information by filtering out too many frames,
we seek sharp image regions, from which we formulate a graph-cut
based optimization for image sharpness and coherence (see Sec 5.4).
This leads to a high-quality texture map over the known geometry.

We then complete the textured model to fill holes that were oc-
cluded or unseen in the original scan.While general, high-resolution
scene completion is a very challenging task, our primitive-based
abstraction enables effective hole-filling for both geometry and
color on our scene representation. To complete the geometry of the
model, we extrapolate primitives in unobserved space according
to the camera trajectory, such that each primitive meets either an-
other primitive or empty space (see Sec 6.1). We then complete the
color in these regions through image inpainting, following Image
Melding [Darabi et al. 2012] (see Sec. 6.2). This produces a clean,
complete, lightweight model mapped with sharp textures.

4 PRIMITIVE-BASED ABSTRACTION
To compute our primitive-based abstraction of a scanned scene,
we first detect planes for each input frame, then merge these de-
tected planes into a globally consistent set of primitives, and finally
perform a structural refinement, optimizing under parallel and or-
thogonal constraints.

4.1 Frame-based Plane Detection
From an input RGB-D video sequence comprised of a set of depth and
color frames { fi = (Ci ,Di )}, we first use a state-of-the-art RGB-D
reconstruction system to obtain initial camera poses Ti (frame-to-
world) for each frame, and an initial surface S0. For each frame, we
detect planes using the fast plane extraction of Feng et al. [2014].
Instead of detecting planes directly on the input sensor depth, which
is noisy and often contains holes, we operate on depth rendered
from S0. This rendered depth contains data accumulated over pre-
vious frames, which regularizes out noise and incorporates more
information than a single input depth map, and is also well-aligned
to the model geometry S0. For each detected plane Pk in frame
fi , we additionally store two terms containing information used
for primitive merging and structural refinement, as described in
Secs. 4.2 and Sec. 5.3.

• Plane parameter: p = (nx ,ny ,nz ,w)where n = (nx ,ny ,nz )
is the unit normal. It represents the plane n · x +w = 0 in
the camera space of fi .

• Distance Matrix: D = 1
N

∑
q xqx

T
q , where xq is the world

space position of the q-th pixel in the depth map. We can
then easily compute the average of square point-plane dis-
tances (ASD) of Pk with another plane Pl in frame fj as
(p jlT

−1
j ) · D · (p jlT

−1
j )T .

4.2 Primitive Classification
We need to aggregate the per-frame planar regions into a set of
plane primitives representing the planes in the 3D scene. Two planar
regions Pk from frame fi and Pl from frame fj are determined to
be the same primitive if they are close and have enough overlap. We

Fig. 3. Primitive decomposition: each plane primitive is denoted with a
different color. Gray indicates no primitive association.

consider Pk and Pl to be close if max(ASDk→l ,ASDl→k ) < τc (in
practice, we use τc = 0.05m). Overlap is computed by transforming
Pk and into the camera space of fj and computing the percentage
of overlapping pixels relative to the minimum number of pixels
belonging to Pk and Pl . If this overlap percentage is greater than
τo (we use τo = 0.3), the regions are considered to overlap.

We perform this merging step hierarchically. For key frames at
interval n = 10 frames, we merge planes within each key frames’
set of n frames, and then merge planes among all key frames. Each
frame then contains a set of plane primitives labeled according to the
resulting merged set. By projecting the merged primitive labels from
the frames ontoS0, we obtain a primitive decomposition of the scene.
Note that regions with multiple different primitive label assignments
(typically occurring near intersections of different primitive) are
removed from the primitive set. Fig. 3 shows an example primitive
decomposition of an office scan, with different primitive denoted
by different colors, and gray denoting no label assignment.

To filter out any potential outliers from the primitive classification
projection onto S0, we filter out small plane primitives (area less
than 0.2m2) and use a RANSAC approach to filter out outlier points
of larger primitives. For a plane primitive Pk , we check for outliers
by randomly selecting 3 of its associated vertices in S0 and fitting a
plane P′

k to these vertices. A point is then considered an inlier for
P′
k if its distance is smaller than τi . Since S0 often contains warping

in large plane primitives due to sensor noise and distortion, as well
as camera pose micro-drift, we conservatively set τi = 0.1m. We
repeat this process for 128 iterations, and update Pk with the best
fitting plane to the largest set of inliers in the least squares sense.

4.3 Structural Refinement
Since we use a relatively conservative inlier threshold to compute
the plane primitives, planes which should be orthogonal or parallel
to each other are typically off by a few degrees. We thus perform
a structure refinement optimization on the planar primitives to
encourage them to conform to a Manhattan world. Similar to Halber
and Funkhouser [2017], we formulate an energy minimization using
parallel and orthogonal constraints:
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Es = Ed + λEa (1)

Ed =

#planes∑
i

#plane verts∑
j

D(Pi ,vi j )
2 , (2)

Ea =
∑
i, j ∈Ω

|A(Pi ,Pj ) − 90 · ni j |
2 . (3)

For each plane primitive P, Ed measures the plane fitting error,
where D(P,vi ) is the distance from an inlier vertexvi to P. Ea mea-
sures the angle error between orthogonal planes, where A(Pi ,Pj )

is the angle of two planes, Ω is a set of parallel and orthogonal plane
pairs. The set Ω is collected by testing each pair of plane primitives,
and adding them to the set if the angular difference between their
normals lies in [90ni j − 10, 90ni j + 10], where ni j ∈ {0, 1, 2, 3}. The
final energy Es is then a linear combination of Ed and Ea , with
λ =

E0
a

E0
d
to balance the plane fitting error and structure error.

The optimization typically converges in about 10 iterations, with
resulting angle errors less than 1◦ and plane fitting error about 1.1
times larger. As a result, we can rectify the orthogonal structure of
the planar primitives with very small trade-off from fitting accuracy.
From this optimized result, we can produce a lightweight, cleanmesh
Sp by projecting the vertices of S0 to their associated primitives, as
shown in Fig 7(a).

5 TEXTURE OPTIMIZATION
We aim to map our primitive-abstracted geometric model Sp with
sharp, clear textures to produce a visually compelling 3D model.
It is not suitable to directly project pixels from each color frame
to the geometric model, due to the issues of motion blur and cam-
era misalignments. In our texture optimization step, we directly
address these problems with a texture optimization method to solve
for refined camera poses and image warping, as well as a texture
sharpening step which considers per-pixel image sharpness to solve
for globally crisp colors.

5.1 Color-based Primitive Refinement
Since we originally detected plane primitives from rendered depth
(Sec. 4.1), there may be some disagreement along primitive bound-
aries with the input RGB-D frame. Thus pixels that are close to prim-
itive boundaries are easily mis-classified, and we must re-classify
them to agree with the input color images. To ensure that primi-
tive labels are coherent in the image domain and maintain bound-
aries consistent with the input color frames, we formulate a graph-
cut [Boykov et al. 2001] based energy minimization problem:

El =
∑
p

D(p, lp ) +
∑
p,q

Vpqδ (lp , lq ) . (4)

Here D(p, lp ) indicates the penalty for pixel p to be classified as lp .
For confident regions, we won’t change their labels l0p . So D(p, lp )
is 1 for lp = l0p and inf for other labels. For regions that need to
be reclassified, D(p, lp ) = 1 for all labels lp . We additionally have
a penalty at the boundary of the primitives, δ (lp , lq ): p and q are
neighbor pixels and δ is 1 if lp , lq and 0 otherwise. Vpq measures
how good it is to cut between p and q, depending on their color

(a) color frame (b) depth frame (c) rendered depth

(d) plane labels (e) refined labels

Fig. 4. Color-based primitive refinement: (a) Input color. (b) Input depth. (c)
Rendered depth. (d) Primitive classification from rendered depth. (e) Refined
primitive classification according to the color frame.

differences. We set Vpq = e( | |C(p)−C(q) | |
2)/σ 2

. For our experiments,
we re-classify pixels within 10 pixels of the boundary of a 640 × 480
image, and use σ = 30 with colors C(x) ∈ [0, 255]. Figure 4 shows
the result of our refinement.

5.2 Color Transfer Optimization
In solving for a texture mapping, it is important to ensure consistent
color across different views (e.g., due to auto-white balancing or
auto-exposure). This can be achieved by transferring colors with a
mapping function. For example, NRDC [HaCohen et al. 2011] search
for correspondences between images, and optimizes for such a map-
ping function to transfer color style from one image to another. In
the scenario of RGBD scanning, correspondences can be easily ac-
quired from camera poses and geometry. Zhang et al. [2016] solves
the problem by minimizing vertex radiance error viewed from differ-
ent color frames, given the exposure. In order tomodel white balance
and exposure changes, we refer to the NRDC model to transfer col-
ors using three spline curves (Bj (r ,д,b) = (B1

j (r ),B
2
j (д),B

3
j (b))) for

the rgb channels of the j-th frame. Then for a 3D point pi and it’s
corresponding pixels {qi j } in frames {j} under the current camera
poses, we want the color C(pi ) to be close to Bj (qi j ):

Et =
∑
i

∑
j

| |C(pi ) − Bj (qi j )| |
2 + λ

∑
i

∑
j
(B′

j (xi ) − 1)2 . (5)

While [Zhang et al. 2016] use the first frame as a reference exposure,
we don’t need this constraint. Instead, we regularize the derivatives
of the transfer functions B′

j (xi ) to be ≈ 1. This helps preserve the
variance of the color. We use λ = 0.1, and xi is a sequence of 10
integers from 0 to 250 with interval 25. Since this optimization
depends on the quality of the camera transforms, we iterate this
color correction step with the color image alignment optimization
described below.

5.3 Refined Texture Map Alignment
Key to achieving high-quality texture is obtaining precisely aligned
color frames. This is a challenging task, as there are artifacts from
consumer-grade sensors and the geometry is often imprecise. The
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color map optimization approach of Zhou and Koltun [2014] con-
siders fixed geometry and jointly optimizes for color camera poses
and image warping parameters. This reduces the dimensionality of
the problem, using image warping to reduce potential color mis-
alignment from geometric error, achieving compelling results for
object scans. However, their optimization relies on dense photomet-
ric error, which has a relatively small basin of convergence and is
thus rather sensitive to initial pose estimates. For our large-scale
scanning scenario, this energy is not very robust to the variance in
initial camera poses.
In our formulation, we solve for a set of camera parameters for

each frame separately from non-rigid correction, which we found to
be more effective in practice. We adopt the idea of EM optimization
with the help of dense color errors from Zhou and Koltun, and solve
to maximize photo-consistency. To aid convergence, we additionally
introduce sparse feature and primitive-based constraints into the
optimization. Thus our energy is defined as

E(T) = Ec (T) + λsEs (T) + λpEp (T) ,

where Ec represents the dense photometric energy, Es the sparse
feature term, and Ep primitive relationship constraints, and we
solve for rigid camera poses (camera-to-world) T = {Ti } for each
frame. Following Zhou and Koltun, we also optimize for proxy
variables C(pi ) denoting the color at 3D point pi on the geometry
surface. We perform this optimization hierarchically in coarse-to-
fine fashion to aid convergence at fine-scale resolution, using 3
hierarchy levels in which pi are sampled at 0.032m, 0.008m, 0.002m
from the primitive-abstracted Sp , respectively. λs and λp are set
such that Ec (T0) = λsEs (T0) = λpEp (T0).

Sparse Term. In our sparse matching term, we minimize the
sum of world-space distances between pairs of sparse feature corre-
spondences transformed from image space to the space of the 3D
primitives. For a frame fi and plane primitive Pk , we transform
a pixel pi under the homography H i

k , depending on Pk and the
camera pose Ti , to bring it into the space of the primitive Pk . Then
for a pixel correspondence {pim ,pjm } from frames fi and fj and
which correspond to 3D primitives Pk and Pl (when projected in
3D under the current camera poses), we optimize for the energy

Es (T) =
#corr∑
m

| |H i
kpim − H

j
l pjm | |2 . (6)

Sparse features are detected by projecting each color frame into
the plane primitives, detecting SIFT [Lowe 2004] features in the pro-
jected images. Correspondences are determined by SIFT matching
followed by a verification step to ascertain that there is a valid 2D
rigid transform bringing one set of correspondences from an image
to another. Valid correspondence features are then back-projected
to the original color frames to compose the sparse feature set. This
produces a robust set of feature correspondences, since the projec-
tion into a 3D plane does not rely on depth maps which contain
noise and distortion, and matching in the warped space contains
reduced scale and affine variance than in the original color images.

Primitive Constraint Term. We restrict the per-frame planar
regions computed in Sec 4.1 to align well with Sp , geometrically.

Eд(T) =
∑
i

∑
j
(PjT

−1
j pi )

T (PjT
−1
j pi ) . (7)

Here, pi is the homogeneous coordinate of the sampled 3D points
from Sp . Pj is the camera-space plane parameter (as in Sec. 4.1) of
the i-th planar region of frame j.

Dense Term. Finally, the dense term measures photo-metric
error from the color frames projected onto Sp .

Ec (T) =
∑
i

| |C(pi ) −
∑
j
Ij (π (T

−1
j pi ))| |

2 , (8)

where pi is in the set of sampled 3D points of Sp and π denotes the
perspective projection.
We solve for E(T) by solving for both the per-frame transforms

T and the proxy variable colors on the geometry C(pi ). After an
initial three iterations at the coarsest resolution, we are able to
compute very reliable sets of correspondences for a color transfer
correction (as described in Sec. 5.2); after the color correction, we
further optimize for refined camera poses at the middle and high
resolutions for five and two iterations respectively.

After solving for the rigid camera poses, we additionally optimize
for non-rigid image warping to reduce color misalignment due to
possible geometric error, following Zhou and Koltun [2014].

5.4 Texture Sharpening
Motion blur is a common problem when capturing handheld video
using commodity RGB-D sensors. Even with perfect alignment of
camera frames, a blurry image can still significantly decrease the
quality of the model color. Most existing scanning methods average
colors from all corresponding frames, or update the color online
with a weighted combination. In order to mitigate this issue, the
color map optimization of Zhou and Koltun [2014] selects sharpest
keyframes every 1 to 5 seconds, with sharpness of a frame evaluated
using the method by Crete et al. [Crete et al. 2007]. However, when
we applied this to our scenario, not all blurry frames were filtered
out, and if keyframes were selected with interval greater than 1
second, color information was lost in some regions. In fact, in the
room-scale setting, this tends to preserve views where the camera is
closer to the scene, as such images typically have more objects and
thus higher color variance. However, we wish to preserve cameras
with closer views to the scene, which capture textures with more
detail. Thus we instead aim to only map the sharpest regions of the
images onto the geometry; i.e., for each primitive in Sp we map
the sharpest region of color from any single image. To this end, we
consider both image pixel sharpness and image region sharpness
in order to select key frames at an intervals of [10,20] frames. For
image pixel sharpness, we use the metric of [Vu et al. 2012], and for
image region sharpness we consider both pixel sharpness and visual
density, where visual density measures the quality of the view of
a pixel (accounting for far distances and glancing angles), and is
defined as

r j (pi ) =
(
(T−1
j π−1(pi ))

��
z

)−2
· cos(r · n) , (9)
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where pi is a pixel of frame j, r is the ray from the camera to pi ,
and n the camera-space normal at the 3D point corresponding to
pi . The region sharpness for a pixel is then defined as Sregj (pi ) =
Spix(pi ) · r j (pi ).

Since we wish to avoid noise potentially introduced by sampling
from many different frames for similar 3D locations, we formulate
a graph-cut [Boykov et al. 2001] based energy optimization which
further incorporates frame coherence:

E =
∑
p

|Sl (p)(p) − Smax(p)|+

λ
∑

(p,q)
| |Cl (p)(π (T−1

l (p)p)) − Cl (q)(π (T−1
l (q)q))| | · δ (lp , lq ) ,

(10)

solving for frame index l(p) for each point p ∈ Sp . The first term
encourages sharpness, with Smax(p) denoting the sharpest possible
score for p. The second term encourages coherence by penalizing
neighboring points p and q if they are associated with different
frames, with penalty proportional to the respective color difference
in order to achieve a seamless graph cut.
Figure 5 shows a challenging example, where a table texture is

composed of projections from the 147 sharpest color frames of more
than 3000 images. We see that directly sampling from frames with
the highest region sharpness value ((c),(d)) improves upon the tex-
ture sharpness of Zhou and Koltun [2014] ((a),(b)), but contains some
noise due to lack of coherence in the frames being sampled from.
Our final texture sharpening result ((e), (f)) balances both sharpness
and frame coherence, preserving sharpness while reducing noise.

Using direct color sampling can still result in noticeable artifacts
when transitioning from sampling from one frame to another, as
shown in Fig. 6(b). We perform a final step in to mitigate these effects
in the sharpening process. We combine the divergence map �C(p)
from the labeling resulting from solving Eq. 10, which represents
texture information [Pérez et al. 2003], with the color map C̄(p)
computed by averaging, and solve for the final texture F (p) in the
least squares optimization

E(F ) =
∑
p

| |F (p) − C̄(p)| |2 + λ | |�F (p) − �C(p)| |2 . (11)

As shown in Fig. 6, this maintains sharpness while removing bound-
ary inconsistencies.

6 SCENE COMPLETION
While our texture-optimized, lightweight mesh contains sharp, com-
pelling color, it nonetheless remains incomplete, due to occlusions
or limited scanning coverage. 3D completion is a challenging task,
as it typically requires example-based learning techniques [Dai et al.
2017c], and the problem becomes cubically more complex with
higher resolutions and larger spatial extents. We thus exploit our
planar primitive abstraction to simplify 3D scene completion in both
geometry and color.

6.1 Geometry Completion
A plane-based primitive abstraction enables geometry completion
by plane extrapolation in unseen regions [Dzitsiuk et al. 2017]. We
use several rules to guide our completion approach, visualized in
Fig. 8:

Fig. 5. Texture generation from multiple frames: (a) Color map optimiza-
tion [Zhou and Koltun 2014] (averaging). (b) Zoom-in from (a). (c) Direct
copy from sharpest region. (d) Zoom-in from (c). (e) Balance sharpness and
region coherence. (f) Zoom-in from (e). (g) Frame indices with sharpest local
region. (h) Optimized frame indices for color sampling.

• Two planes should be extrapolated to their intersection if
the extrapolated area is unobserved.

• If three planes will intersect each other, extrapolate them
to meet at a corner if the extrapolated area is unobserved.

• No planes should be extrapolated into open space (observed
to be empty). Note that we use the initial TSDF to determine
known occupied, known empty, and unobserved space, ac-
cording to the camera trajectory.

• Holes self-contained in a plane should be filled if they are
in unobserved space.

We search for all pairs of planes satisfying the first rule and
extrapolate them. Then, we find all triplets of planes under the
second rule and extrapolate them. Our algorithm is invariant to the
extrapolation order since the final state forces all planes to meet in
unobserved areas. For each pair of planar primitives, we attempt
to detect potential extrapolation regions, and then repeat the same
for all sets of three planar primitives which intersect. Finally, we fill
in unobserved holes self-contained within planar primitives. Note
that while this process achieves successful completion for scenes
in which parts of all major planes have been observed, we cannot
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Fig. 6. Texture optimization combining averaged color and sampled diver-
gence map. (a) Averaged color from all selected frames. (b) Direct color
sampling from optimized frame indices. (c) Optimization combining aver-
aged color and sampled divergence map.

(a) Plane Fitting (b) Plane Extrapolation

Fig. 7. Primitive fitting and extrapolation: (a) After primitive fitting and
structural refinement, we project vertices to the primitives, producing a
clean mesh. (b) We extrapolate primitives in occluded regions to close the
surface.

generate geometry from scratch in the case of very large regions of
unobserved scene geometry (see Sec 8.1 for further discussion).
Figs. 7 and 9 demonstrate our extrapolation and hole-filling to

generate complete scenes.

6.2 Texture Completion
Our plane-based primitive abstraction reduces the 3D texture com-
pletion problem into a two-dimensional one over plane textures.
As this texture synthesis problem is a classical one and has been
well-studied [Barnes et al. 2009; Criminisi et al. 2004; Darabi et al.
2012; Pathak et al. 2016; Simakov et al. 2008; Wang et al. 2016; Yang
et al. 2016], we employ state-of-the-art image inpainting techniques
to complete texture in geometry-extrapolated regions.
Although recent deep learning based methods have shown im-

pressive results, they require a large training set and are mostly
constrained to fixed image resolutions. Thus we use Image Meld-
ing [Darabi et al. 2012], a patch-based approach incorporating image
transforms and gradients into a mixed �2/�0 optimization to achieve
high-quality image inpainting. We found the method to work well

(a) (b) (c)

(d) (e)

Fig. 8. Rules for plane extrapolation. (a) Two planes should extrapolate
to their intersection. (b) Three planes should extrapolate to their intersec-
tion. (c) No planes should be extrapolated through known empty space. (d)
Extrapolation (light red) can be viewed as a certain boundary (red) extend-
ing in the direction (blue) orthogonal to the intersection line. (e) A more
complex example, showing invalidation of potential extrapolation due to
known empty space. Only the blue regions should be extended towards the
intersection.

Fig. 9. An example of extrapolation and hole filling. Left: Green lines rep-
resent possible intersections between sets of planes. Blue represents the
original scene geometry, red the extrapolated regions, yellow removed origi-
nal geometry extending past intersections, gray known empty space, and
white self-contained holes which were filled. Right: Completed plane primi-
tive with texture.

for most cases, except when there are incomplete regions of a tex-
ture which cover a distinct foreground and smooth background, or
when there are shadows on the background, as shown in Fig. 10(b).
In these cases, we detect the background using image segmenta-
tion [Felzenszwalb and Huttenlocher 2004], and extend it to fill the
entire image using laplacian smoothing (Fig. 10(c)). We then com-
bine the synthesized background with the foreground (Fig. 10(d)),
and synthesize pixels less than 10 pixels from the foreground using
Image Melding (Fig. 10(e)).

7 MESH GENERATION
In section, we discuss the procedure to generate the final light-
weight mesh. We first denoise plane boundaries and then convert
the planar primitive abstraction to a mesh, producing a final model
≈ 25 times smaller than the original mesh.
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(a) (b) (c) (d) (e)

Fig. 10. Texture completion. (a) Original texture with green denoting regions
to be synthesized. (b) Direct application of Image Melding [Darabi et al.
2012]. (c) Background color estimation. (d) Combined background and
original texture. (e) Remaining pixels inpainted with Image Melding.

(a) Noisy boundary (b) Smoothed boundary

Fig. 11. Smoothing the boundary. Initial plane primitive boundaries are
noisy (left), which we smooth with B-Splines and lines (right).

Boundary Refinement. Plane boundaries are often noisy, due
to noise and distortion in the input sensor data and the initial re-
construction. To denoise the boundaries, we smooth them with a
combination of line and B-spline fitting. Lines are fit to each vertex
on the boundary (sampled at every 8mm) by using its 51 neighbor-
ing vertices. A vertex belongs to a line if the condition number of
the covariance of these vertices is larger than 50. We then iteratively
merge line-associated neighbor vertices together if their lines are no
more than 5◦ apart. We fit B-splines to each consecutive sequence
of vertices not belonging to any lines.

Primitive Remeshing. To generate our final mesh, we trian-
gulate the planar primitives using constrained Delaunay triangu-
lation [Chew 1987]. Figure 12(a) shows the resulting simplified
triangle mesh, which accurately preserves primitive boundaries.
Because we use discretized pixels to generate the original primi-
tive boundaries, there can be small gaps between primitives which
should be connected. To close these gaps, we project vertices near
primitive intersections to the intersecting primitive, as shown in
Figure 12(b).

(a) Mesh simplification. (b) Closing surfaces.

Fig. 12. Mesh simplification and vertex projection. (a)We simplify the planar
primitives with constrained Delaunay triangulation. (b) We apply vertex
projection to close the surfaces which should be connected.

BundleFusion Scenes ScanNet
Scenes office0 office1 office3 0567_01 0451_05

Region(s) 478 503 531 472 523
Plane(s) 21.5 17.1 23.2 16.5 25.4

Sharpness(s) 1138 1186 1266 811 8436
Color(s) 11458 9553 14432 9866 9315

Boundary(s) 1.156 1.101 1.157 0.781 1.384
ScanNet other

Scenes 0294_02 0271_01 0220_02 apt offices
Region(s) 535 511 517 585 897
Plane(s) 23.9 18.7 27.4 38.1 61.8

Sharpness(s) 1011 828 935.4 1151 1968
Color(s) 16407 9601 8575 18226 35976

Boundary(s) 1.219 0.921 1.406 2.016 3.725
Table 1. Timings (seconds) for different components.

8 RESULTS
We tested our method on a variety of RGB-D scans of indoor scenes.
All scans were captured using a Structure Sensor2 mounted to an iPad
Air, including several sequences from the BundleFusion data [Dai
et al. 2017b] as well as the ScanNet [Dai et al. 2017a] dataset. We
use 640 × 480 color and depth, synchronized at 30Hz. Note that we
are agnostic to the type of RGB-D sensor used. For each scan, we
compute the initial camera poses using BundleFusion. All 3DLite
experiments were performed on an Intel Core i7 2.6GHz CPU, with
each scan taking on average 5 hours to process. Detailed timings
are shown in Table 1.
Qualitative comparison. We first compare our lightweight, tex-

tured meshes of 10 scenes with 3D reconstructions computed using
BundleFusion and VoxelHashing [Nießner et al. 2013]. Note that
since BundleFusion’s online re-integration updates use color dis-
cretized to bytes, there may be some small color artifacts in the
resulting reconstruction, so we first run BundleFusion to obtain
camera poses and then compute a surface reconstruction with Vox-
elHashing. As shown in Figs. 13 and 14, even with simplified geome-
try, our high quality textures provide visually compelling results on
completed scenes, drastically reducing various color oversmoothing
artifacts.

Primitive abstraction. We show several examples of our primitive-
based geometry in Fig. 15, which allows us to produce denoised
and complete geometry compared to the original reconstruction, in
a much more lightweight representation, which is more than 300

2https://structure.io
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Fig. 13. Reconstructed meshes with high-quality surface textures. 3DLite produces completed scenes while significantly reducing color artifacts compared to
reconstructions generated with BundleFusion [Dai et al. 2017b] and VoxelHashing [Nießner et al. 2013].

BundleFusion Scenes ScanNet
Scenes office0 office1 office3 0567_01 0451_05

FaceNum 62559 68874 63479 43153 89621
ScanNet other

Scenes 0294_02 0271_01 0220_02 apt offices
FaceNum 58709 58790 82864 92898 174200

Table 2. Number of faces in 3DLite models.

times smaller than the original mesh under the same resolution. The
face number of our scenes is shown in Table 2.

Compared to traditional plane fitting using RANSAC, our method
is more robust in detecting relatively small planes, as shown in
Fig. 16.

Color alignment.We analyze our color alignment approach, show-
ing the effect of our sparse and primitive geometry terms in Fig. 17
(optimizing for rigid poses only). Without color optimization, the

result contains oversmoothing and ghosting. Optimizing for rigid
poses under a dense photometric error using Zhou and Koltun [2014]
sharpens the image but still retains some artifacts where initial cam-
era poses were too far from the basin of convergence. Our new
terms are able to bring the optimization to a precise alignment of
color frames.

Color transfer correction. We show the effect of the color transfer
optimization in Fig. 18, significantly reducing not only visible arti-
facts from auto-exposure and auto-white balancing, but also various
color inconsistencies which can occur even under fixed exposure
and white balancing settings.
Texture sharpening. In Fig. 19, we show the effectiveness of our

texture sharpening approach. Since we generate a consistent tex-
turing from sharp regions of the input images, images rendered
from our 3D model can be sharper than some of the original RGB
images (which often contain motion blur), as well as deblurred RGB
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Fig. 14. Zoomed-in views showing our reconstructed 3d models compared to reconstructions produced by BundleFusion [Dai et al. 2017b] and VoxelHash-
ing [Nießner et al. 2013].

images using advanced video motion deblur techniques [Su et al.
2016]. Such deblurring, while noticeably reducing blur in several
parts of the image, still has some difficulty near image boundaries,
and with large motion.
Texture completion. Fig. 20 shows several texture completion re-

sults using background filling along with Image Melding [Darabi
et al. 2012] to synthesize colors in unobserved regions. We are thus
able to generate complete scene models with textured geometry.

8.1 Limitations
While 3DLite can robustly generate lightweight, abstracted mod-
els with sharp textures, it still suffers from several limitations, as
visualized in Fig. 21. If there is geometry entirely unseen in the
original scan, we cannot generate it from scratch to complete these
regions. Additionally, small objects (e.g., keyboards, mice) are often
projected onto planar primitives; this is not too dissimilar from

reconstructions generated from volumetric fusion, where the coarse
resolution, noise, and distortion of a commodity depth sensor can
also make small objects difficult to distinguish geometrically. Fur-
ther, while state-of-the-art texture synthesis methods can achieve
impressive results, they are not perfect, and may still have difficulty
synthesizing color in large missing regions. Most notably, our cur-
rent primitive abstraction is plane-based, so relatively non-planar
objects (e.g., some chairs) are not captured in our geometric abstrac-
tion. We hope to extend our approach in combination with CAD
model retrieval, alignment, and texturing in order to retain all scene
geometry and texture.

9 CONCLUSION
We have presented a new approach to generating visually com-
pelling 3D reconstructions, making a step towards production-ready
models for content creation pipelines by addressing the issues of
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Fig. 15. Primitive-based Abstraction. First row: original mesh. Second row:
after primitive fitting. Third row: after geometry completion by primitive
extrapolation. Last row: final result after texture mapping and mesh genera-
tion.

Fig. 16. Comparison between our method and plane fitting with RANSAC.
Our method is more robust in detecting relatively small planes.

oversmoothed, low quality color and incompleteness of existing
large-scale 3D reconstructions. 3DLite focuses on generating high-
quality textures on abstracted geometry through texture optimiza-
tion and sharpening, generating a consistent 3Dmodel with textures
that can be sharper than the original RGB images. We further exploit
our primitive-based representation to complete scene geometry and
color in unseen regions in an input scan. We believe that this is a
first step towards commodity 3D scanning for content creation, and
we hope that this will pave the way for handheld 3D scanning to be
used in production pipelines.

Fig. 17. Color Alignment. (a) Color averaging. (b) Camera poses optimized
with only dense color [Zhou and Koltun 2014]. (c) Camera poses optimized
using our method, with dense color, sparse feature and geometry informa-
tion.
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